Ctrl+K
Logo image Logo image

Site Navigation

  • API Reference
  • Examples

Site Navigation

  • API Reference
  • Examples

Section Navigation

  • PyFlink Table
  • PyFlink DataStream
    • StreamExecutionEnvironment
    • DataStream
    • Functions
    • State
    • Timer
    • Window
    • Checkpoint
    • Side Outputs
    • Connectors
    • Formats
  • PyFlink Common

pyflink.datastream.data_stream.KeyedStream.min#

KeyedStream.min(position_to_min: Union[int, str] = 0) → pyflink.datastream.data_stream.DataStream[source]#

Applies an aggregation that gives the current minimum of the data stream at the given position by the given key. An independent aggregate is kept per key.

Example(Tuple data):

>>> ds = env.from_collection([('a', 1), ('a', 2), ('b', 1), ('b', 5)])
>>> ds.key_by(lambda x: x[0]).min(1)

Example(Row data):

>>> ds = env.from_collection([('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 2)],
...                          type_info=Types.ROW([Types.STRING(), Types.INT()]))
>>> ds.key_by(lambda x: x[0]).min(1)

Example(Row data with fields name):

>>> ds = env.from_collection(
...     [('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 2)],
...     type_info=Types.ROW_NAMED(["key", "value"], [Types.STRING(), Types.INT()])
... )
>>> ds.key_by(lambda x: x[0]).min("value")
Parameters

position_to_min – The field position in the data points to minimize. The type can be int (field position) or str (field name). This is applicable to Tuple types, List types, Row types, and basic types (which is considered as having one field).

Returns

The transformed DataStream.

New in version 1.16.0.

previous

pyflink.datastream.data_stream.KeyedStream.sum

next

pyflink.datastream.data_stream.KeyedStream.max

Show Source

Created using Sphinx 4.5.0.