Ctrl+K
Logo image Logo image

Site Navigation

  • API Reference
  • Examples

Site Navigation

  • API Reference
  • Examples

Section Navigation

  • PyFlink Table
  • PyFlink DataStream
    • StreamExecutionEnvironment
    • DataStream
    • Functions
    • State
    • Timer
    • Window
    • Checkpoint
    • Side Outputs
    • Connectors
    • Formats
  • PyFlink Common

pyflink.datastream.stream_execution_environment.StreamExecutionEnvironment.from_source#

StreamExecutionEnvironment.from_source(source: pyflink.datastream.connectors.base.Source, watermark_strategy: pyflink.common.watermark_strategy.WatermarkStrategy, source_name: str, type_info: Optional[pyflink.common.typeinfo.TypeInformation] = None) → pyflink.datastream.data_stream.DataStream[source]#

Adds a data Source to the environment to get a DataStream.

The result will be either a bounded data stream (that can be processed in a batch way) or an unbounded data stream (that must be processed in a streaming way), based on the boundedness property of the source.

This method takes an explicit type information for the produced data stream, so that callers can define directly what type/serializer will be used for the produced stream. For sources that describe their produced type, the parameter type_info should not be specified to avoid specifying the produced type redundantly.

New in version 1.13.0.

previous

pyflink.datastream.stream_execution_environment.StreamExecutionEnvironment.add_source

next

pyflink.datastream.stream_execution_environment.StreamExecutionEnvironment.read_text_file

Show Source

Created using Sphinx 4.5.0.