Ctrl+K
Logo image Logo image

Site Navigation

  • API Reference
  • Examples

Site Navigation

  • API Reference
  • Examples

Section Navigation

  • PyFlink Table
  • PyFlink DataStream
    • StreamExecutionEnvironment
    • DataStream
    • Functions
    • State
    • Timer
    • Window
    • Checkpoint
    • Side Outputs
    • Connectors
    • Formats
  • PyFlink Common

pyflink.datastream.stream_execution_environment.StreamExecutionEnvironment.set_python_executable#

StreamExecutionEnvironment.set_python_executable(python_exec: str)[source]#

Sets the path of the python interpreter which is used to execute the python udf workers.

e.g. “/usr/local/bin/python3”.

If python UDF depends on a specific python version which does not exist in the cluster, the method pyflink.datastream.StreamExecutionEnvironment.add_python_archive() can be used to upload a virtual environment. The path of the python interpreter contained in the uploaded environment can be specified via this method.

Example:

# command executed in shell
# assume that the relative path of python interpreter is py_env/bin/python
$ zip -r py_env.zip py_env

# python code
>>> stream_env.add_python_archive("py_env.zip")
>>> stream_env.set_python_executable("py_env.zip/py_env/bin/python")

Note

Please make sure the uploaded python environment matches the platform that the cluster is running on and that the python version must be 3.7 or higher.

Note

The python udf worker depends on Apache Beam (version == 2.43.0). Please ensure that the specified environment meets the above requirements.

Parameters

python_exec – The path of python interpreter.

previous

pyflink.datastream.stream_execution_environment.StreamExecutionEnvironment.add_python_archive

next

pyflink.datastream.stream_execution_environment.StreamExecutionEnvironment.add_jars

Show Source

Created using Sphinx 4.5.0.