This documentation is for an unreleased version of Apache Flink. We recommend you use the latest stable version.
窗口 Top-N #
Batch Streaming
窗口 Top-N 是特殊的 Top-N,它返回每个分区键的每个窗口的N个最小或最大值。
与普通Top-N不同,窗口Top-N只在窗口最后返回汇总的Top-N数据,不会产生中间结果。窗口 Top-N 会在窗口结束后清除不需要的中间状态。 因此,窗口 Top-N 适用于用户不需要每条数据都更新Top-N结果的场景,相对普通Top-N来说性能更好。通常,窗口 Top-N 直接用于 窗口表值函数上。 另外,窗口 Top-N 可以用于基于 窗口表值函数 的操作之上,比如 窗口聚合,窗口 Top-N 和 窗口关联。
注意:SESSION
窗口 Top-N 目前不支持批模式。
窗口 Top-N 的语法和普通的 Top-N 相同,更多信息参见:Top-N 文档。
除此之外,窗口 Top-N 需要 PARTITION BY
子句包含 窗口表值函数 或 窗口聚合 产生的 window_start
和 window_end
。
否则优化器无法翻译。
下面展示了窗口 Top-N 的语法:
SELECT [column_list]
FROM (
SELECT [column_list],
ROW_NUMBER() OVER (PARTITION BY window_start, window_end [, col_key1...]
ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownum
FROM table_name) -- relation applied windowing TVF
WHERE rownum <= N [AND conditions]
示例 #
在窗口聚合后进行窗口 Top-N #
下面的示例展示了在10分钟的滚动窗口上计算销售额位列前三的供应商。
-- tables must have time attribute, e.g. `bidtime` in this table
Flink SQL> desc Bid;
+-------------+------------------------+------+-----+--------+---------------------------------+
| name | type | null | key | extras | watermark |
+-------------+------------------------+------+-----+--------+---------------------------------+
| bidtime | TIMESTAMP(3) *ROWTIME* | true | | | `bidtime` - INTERVAL '1' SECOND |
| price | DECIMAL(10, 2) | true | | | |
| item | STRING | true | | | |
| supplier_id | STRING | true | | | |
+-------------+------------------------+------+-----+--------+---------------------------------+
Flink SQL> SELECT * FROM Bid;
+------------------+-------+------+-------------+
| bidtime | price | item | supplier_id |
+------------------+-------+------+-------------+
| 2020-04-15 08:05 | 4.00 | A | supplier1 |
| 2020-04-15 08:06 | 4.00 | C | supplier2 |
| 2020-04-15 08:07 | 2.00 | G | supplier1 |
| 2020-04-15 08:08 | 2.00 | B | supplier3 |
| 2020-04-15 08:09 | 5.00 | D | supplier4 |
| 2020-04-15 08:11 | 2.00 | B | supplier3 |
| 2020-04-15 08:13 | 1.00 | E | supplier1 |
| 2020-04-15 08:15 | 3.00 | H | supplier2 |
| 2020-04-15 08:17 | 6.00 | F | supplier5 |
+------------------+-------+------+-------------+
Flink SQL> SELECT *
FROM (
SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY price DESC) as rownum
FROM (
SELECT window_start, window_end, supplier_id, SUM(price) as price, COUNT(*) as cnt
FROM TABLE(
TUMBLE(TABLE Bid, DESCRIPTOR(bidtime), INTERVAL '10' MINUTES))
GROUP BY window_start, window_end, supplier_id
)
) WHERE rownum <= 3;
+------------------+------------------+-------------+-------+-----+--------+
| window_start | window_end | supplier_id | price | cnt | rownum |
+------------------+------------------+-------------+-------+-----+--------+
| 2020-04-15 08:00 | 2020-04-15 08:10 | supplier1 | 6.00 | 2 | 1 |
| 2020-04-15 08:00 | 2020-04-15 08:10 | supplier4 | 5.00 | 1 | 2 |
| 2020-04-15 08:00 | 2020-04-15 08:10 | supplier2 | 4.00 | 1 | 3 |
| 2020-04-15 08:10 | 2020-04-15 08:20 | supplier5 | 6.00 | 1 | 1 |
| 2020-04-15 08:10 | 2020-04-15 08:20 | supplier2 | 3.00 | 1 | 2 |
| 2020-04-15 08:10 | 2020-04-15 08:20 | supplier3 | 2.00 | 1 | 3 |
+------------------+------------------+-------------+-------+-----+--------+
注意: 为了更好地理解窗口行为,这里把 timestamp 值后面的0去掉了。例如:在 Flink SQL Client 中,如果类型是 TIMESTAMP(3)
,2020-04-15 08:05
应该显示成 2020-04-15 08:05:00.000
。
在窗口表值函数后进行窗口 Top-N #
下面的示例展示了在10分钟的滚动窗口上计算价格位列前三的数据。
Flink SQL> SELECT *
FROM (
SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY price DESC) as rownum
FROM TABLE(
TUMBLE(TABLE Bid, DESCRIPTOR(bidtime), INTERVAL '10' MINUTES))
) WHERE rownum <= 3;
+------------------+-------+------+-------------+------------------+------------------+--------+
| bidtime | price | item | supplier_id | window_start | window_end | rownum |
+------------------+-------+------+-------------+------------------+------------------+--------+
| 2020-04-15 08:05 | 4.00 | A | supplier1 | 2020-04-15 08:00 | 2020-04-15 08:10 | 2 |
| 2020-04-15 08:06 | 4.00 | C | supplier2 | 2020-04-15 08:00 | 2020-04-15 08:10 | 3 |
| 2020-04-15 08:09 | 5.00 | D | supplier4 | 2020-04-15 08:00 | 2020-04-15 08:10 | 1 |
| 2020-04-15 08:11 | 2.00 | B | supplier3 | 2020-04-15 08:10 | 2020-04-15 08:20 | 3 |
| 2020-04-15 08:15 | 3.00 | H | supplier2 | 2020-04-15 08:10 | 2020-04-15 08:20 | 2 |
| 2020-04-15 08:17 | 6.00 | F | supplier5 | 2020-04-15 08:10 | 2020-04-15 08:20 | 1 |
+------------------+-------+------+-------------+------------------+------------------+--------+
注意: 为了更好地理解窗口行为,这里把 timestamp 值后面的0去掉了。例如:在 Flink SQL Client 中,如果类型是 TIMESTAMP(3)
,2020-04-15 08:05
应该显示成 2020-04-15 08:05:00.000
。
限制 #
目前,Flink只支持在滚动,滑动和累计 窗口表值函数后进行窗口 Top-N。基于会话窗口的Top-N将在将来版本中支持。