This documentation is for an out-of-date version of Apache Flink. We recommend you use the latest stable version.
JDBC SQL 连接器 #
Scan Source: Bounded Lookup Source: Sync Mode Sink: Batch Sink: Streaming Append & Upsert Mode
JDBC 连接器允许使用 JDBC 驱动向任意类型的关系型数据库读取或者写入数据。本文档描述了针对关系型数据库如何通过建立 JDBC 连接器来执行 SQL 查询。
如果在 DDL 中定义了主键,JDBC sink 将以 upsert 模式与外部系统交换 UPDATE/DELETE 消息;否则,它将以 append 模式与外部系统交换消息且不支持消费 UPDATE/DELETE 消息。
依赖 #
In order to use the JDBC connector the following dependencies are required for both projects using a build automation tool (such as Maven or SBT) and SQL Client with SQL JAR bundles.
Maven dependency | SQL Client |
---|---|
|
Download |
在连接到具体数据库时,也需要对应的驱动依赖,目前支持的驱动如下:
Driver | Group Id | Artifact Id | JAR |
---|---|---|---|
MySQL | mysql |
mysql-connector-java |
下载 |
PostgreSQL | org.postgresql |
postgresql |
下载 |
Derby | org.apache.derby |
derby |
下载 |
当前,JDBC 连接器和驱动不在 Flink 二进制发布包中,请参阅这里了解在集群上执行时何连接它们。
如何创建 JDBC 表 #
JDBC table 可以按如下定义:
-- 在 Flink SQL 中注册一张 MySQL 表 'users'
CREATE TABLE MyUserTable (
id BIGINT,
name STRING,
age INT,
status BOOLEAN,
PRIMARY KEY (id) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://localhost:3306/mydatabase',
'table-name' = 'users'
);
-- 从另一张表 "T" 将数据写入到 JDBC 表中
INSERT INTO MyUserTable
SELECT id, name, age, status FROM T;
-- 查看 JDBC 表中的数据
SELECT id, name, age, status FROM MyUserTable;
-- JDBC 表在时态表关联中作为维表
SELECT * FROM myTopic
LEFT JOIN MyUserTable FOR SYSTEM_TIME AS OF myTopic.proctime
ON myTopic.key = MyUserTable.id;
连接器参数 #
参数 | 是否必填 | 默认值 | 类型 | 描述 |
---|---|---|---|---|
connector |
必填 | (none) | String | 指定使用什么类型的连接器,这里应该是'jdbc' 。 |
url |
必填 | (none) | String | JDBC 数据库 url。 |
table-name |
必填 | (none) | String | 连接到 JDBC 表的名称。 |
driver |
可选 | (none) | String | 用于连接到此 URL 的 JDBC 驱动类名,如果不设置,将自动从 URL 中推导。 |
username |
可选 | (none) | String | JDBC 用户名。如果指定了 'username' 和 'password' 中的任一参数,则两者必须都被指定。 |
password |
可选 | (none) | String | JDBC 密码。 |
connection.max-retry-timeout |
可选 | 60s | Duration | 最大重试超时时间,以秒为单位且不应该小于 1 秒。 |
scan.partition.column |
可选 | (none) | String | 用于将输入进行分区的列名。请参阅下面的分区扫描部分了解更多详情。 |
scan.partition.num |
可选 | (none) | Integer | 分区数。 |
scan.partition.lower-bound |
可选 | (none) | Integer | 第一个分区的最小值。 |
scan.partition.upper-bound |
可选 | (none) | Integer | 最后一个分区的最大值。 |
scan.fetch-size |
可选 | 0 | Integer | 每次循环读取时应该从数据库中获取的行数。如果指定的值为 '0' ,则该配置项会被忽略。 |
scan.auto-commit |
可选 | true | Boolean | 在 JDBC 驱动程序上设置 auto-commit 标志, 它决定了每个语句是否在事务中自动提交。有些 JDBC 驱动程序,特别是 Postgres,可能需要将此设置为 false 以便流化结果。 |
lookup.cache.max-rows |
可选 | (none) | Integer | lookup cache 的最大行数,若超过该值,则最老的行记录将会过期。 默认情况下,lookup cache 是未开启的。请参阅下面的 Lookup Cache 部分了解更多详情。 |
lookup.cache.ttl |
可选 | (none) | Duration | lookup cache 中每一行记录的最大存活时间,若超过该时间,则最老的行记录将会过期。 默认情况下,lookup cache 是未开启的。请参阅下面的 Lookup Cache 部分了解更多详情。 |
lookup.max-retries |
可选 | 3 | Integer | 查询数据库失败的最大重试时间。 |
sink.buffer-flush.max-rows |
可选 | 100 | Integer | flush 前缓存记录的最大值,可以设置为 '0' 来禁用它。 |
sink.buffer-flush.interval |
可选 | 1s | Duration | flush 间隔时间,超过该时间后异步线程将 flush 数据。可以设置为 '0' 来禁用它。注意, 为了完全异步地处理缓存的 flush 事件,可以将 'sink.buffer-flush.max-rows' 设置为 '0' 并配置适当的 flush 时间间隔。 |
sink.max-retries |
可选 | 3 | Integer | 写入记录到数据库失败后的最大重试次数。 |
sink.parallelism |
可选 | (none) | Integer | 用于定义 JDBC sink 算子的并行度。默认情况下,并行度是由框架决定:使用与上游链式算子相同的并行度。 |
特性 #
键处理 #
当写入数据到外部数据库时,Flink 会使用 DDL 中定义的主键。如果定义了主键,则连接器将以 upsert 模式工作,否则连接器将以 append 模式工作。
在 upsert 模式下,Flink 将根据主键判断插入新行或者更新已存在的行,这种方式可以确保幂等性。为了确保输出结果是符合预期的,推荐为表定义主键并且确保主键是底层数据库中表的唯一键或主键。在 append 模式下,Flink 会把所有记录解释为 INSERT 消息,如果违反了底层数据库中主键或者唯一约束,INSERT 插入可能会失败。
有关 PRIMARY KEY 语法的更多详细信息,请参见 CREATE TABLE DDL。
分区扫描 #
为了在并行 Source
task 实例中加速读取数据,Flink 为 JDBC table 提供了分区扫描的特性。
如果下述分区扫描参数中的任一项被指定,则下述所有的分区扫描参数必须都被指定。这些参数描述了在多个 task 并行读取数据时如何对表进行分区。
scan.partition.column
必须是相关表中的数字、日期或时间戳列。注意,scan.partition.lower-bound
和 scan.partition.upper-bound
用于决定分区的起始位置和过滤表中的数据。如果是批处理作业,也可以在提交 flink 作业之前获取最大值和最小值。
scan.partition.column
:输入用于进行分区的列名。scan.partition.num
:分区数。scan.partition.lower-bound
:第一个分区的最小值。scan.partition.upper-bound
:最后一个分区的最大值。
Lookup Cache #
JDBC 连接器可以用在时态表关联中作为一个可 lookup 的 source (又称为维表),当前只支持同步的查找模式。
默认情况下,lookup cache 是未启用的,你可以设置 lookup.cache.max-rows
and lookup.cache.ttl
参数来启用。
lookup cache 的主要目的是用于提高时态表关联 JDBC 连接器的性能。默认情况下,lookup cache 不开启,所以所有请求都会发送到外部数据库。
当 lookup cache 被启用时,每个进程(即 TaskManager)将维护一个缓存。Flink 将优先查找缓存,只有当缓存未查找到时才向外部数据库发送请求,并使用返回的数据更新缓存。
当缓存命中最大缓存行 lookup.cache.max-rows
或当行超过最大存活时间 lookup.cache.ttl
时,缓存中最老的行将被设置为已过期。
缓存中的记录可能不是最新的,用户可以将 lookup.cache.ttl
设置为一个更小的值以获得更好的刷新数据,但这可能会增加发送到数据库的请求数。所以要做好吞吐量和正确性之间的平衡。
幂等写入 #
如果在 DDL 中定义了主键,JDBC sink 将使用 upsert 语义而不是普通的 INSERT 语句。upsert 语义指的是如果底层数据库中存在违反唯一性约束,则原子地添加新行或更新现有行,这种方式确保了幂等性。
如果出现故障,Flink 作业会从上次成功的 checkpoint 恢复并重新处理,这可能导致在恢复过程中重复处理消息。强烈推荐使用 upsert 模式,因为如果需要重复处理记录,它有助于避免违反数据库主键约束和产生重复数据。
除了故障恢复场景外,数据源(kafka topic)也可能随着时间的推移自然地包含多个具有相同主键的记录,这使得 upsert 模式是用户期待的。
由于 upsert 没有标准的语法,因此下表描述了不同数据库的 DML 语法:
Database | Upsert Grammar |
---|---|
MySQL | INSERT .. ON DUPLICATE KEY UPDATE .. |
PostgreSQL | INSERT .. ON CONFLICT .. DO UPDATE SET .. |
Postgres 数据库作为 Catalog #
JdbcCatalog
允许用户通过 JDBC 协议将 Flink 连接到关系数据库。
目前,PostgresCatalog
是 JDBC Catalog 的唯一实现,PostgresCatalog
只支持有限的 Catalog
方法,包括:
// Postgres Catalog 支持的方法
PostgresCatalog.databaseExists(String databaseName)
PostgresCatalog.listDatabases()
PostgresCatalog.getDatabase(String databaseName)
PostgresCatalog.listTables(String databaseName)
PostgresCatalog.getTable(ObjectPath tablePath)
PostgresCatalog.tableExists(ObjectPath tablePath)
其他的 Catalog
方法现在还是不支持的。
PostgresCatalog 的使用 #
请参阅 Dependencies 部分了解如何配置 JDBC 连接器和 Postgres 驱动。
Postgres catalog 支持以下参数:
name
:必填,catalog 的名称。default-database
:必填,默认要连接的数据库。username
:必填,Postgres 账户的用户名。password
:必填,账户的密码。base-url
:必填,应该符合"jdbc:postgresql://<ip>:<port>"
的格式,同时这里不应该包含数据库名。
CREATE CATALOG mypg WITH(
'type' = 'jdbc',
'default-database' = '...',
'username' = '...',
'password' = '...',
'base-url' = '...'
);
USE CATALOG mypg;
EnvironmentSettings settings = EnvironmentSettings.inStreamingMode();
TableEnvironment tableEnv = TableEnvironment.create(settings);
String name = "mypg";
String defaultDatabase = "mydb";
String username = "...";
String password = "...";
String baseUrl = "..."
JdbcCatalog catalog = new JdbcCatalog(name, defaultDatabase, username, password, baseUrl);
tableEnv.registerCatalog("mypg", catalog);
// 设置 JdbcCatalog 为会话的当前 catalog
tableEnv.useCatalog("mypg");
val settings = EnvironmentSettings.inStreamingMode()
val tableEnv = TableEnvironment.create(settings)
val name = "mypg"
val defaultDatabase = "mydb"
val username = "..."
val password = "..."
val baseUrl = "..."
val catalog = new JdbcCatalog(name, defaultDatabase, username, password, baseUrl)
tableEnv.registerCatalog("mypg", catalog)
// 设置 JdbcCatalog 为会话的当前 catalog
tableEnv.useCatalog("mypg")
from pyflink.table.catalog import JdbcCatalog
environment_settings = EnvironmentSettings.in_streaming_mode()
t_env = TableEnvironment.create(environment_settings)
name = "mypg"
default_database = "mydb"
username = "..."
password = "..."
base_url = "..."
catalog = JdbcCatalog(name, default_database, username, password, base_url)
t_env.register_catalog("mypg", catalog)
# 设置 JdbcCatalog 为会话的当前 catalog
t_env.use_catalog("mypg")
execution:
...
current-catalog: mypg # 设置 JdbcCatalog 为会话的当前 catalog
current-database: mydb
catalogs:
- name: mypg
type: jdbc
default-database: mydb
username: ...
password: ...
base-url: ...
PostgreSQL 元空间映射 #
除了数据库之外,postgreSQL 还有一个额外的命名空间 schema
。一个 Postgres 实例可以拥有多个数据库,每个数据库可以拥有多个 schema,其中一个 schema 默认名为 “public”,每个 schema 可以包含多张表。
在 Flink 中,当查询由 Postgres catalog 注册的表时,用户可以使用 schema_name.table_name
或只有 table_name
,其中 schema_name
是可选的,默认值为 “public”。
因此,Flink Catalog 和 Postgres 之间的元空间映射如下:
Flink Catalog Metaspace Structure | Postgres Metaspace Structure |
---|---|
catalog name (defined in Flink only) | N/A |
database name | database name |
table name | [schema_name.]table_name |
Flink 中的 Postgres 表的完整路径应该是 "<catalog>.<db>.`<schema.table>`"
。如果指定了 schema,请注意需要转义 <schema.table>
。
这里提供了一些访问 Postgres 表的例子:
-- 扫描 'public' schema(即默认 schema)中的 'test_table' 表,schema 名称可以省略
SELECT * FROM mypg.mydb.test_table;
SELECT * FROM mydb.test_table;
SELECT * FROM test_table;
-- 扫描 'custom_schema' schema 中的 'test_table2' 表,
-- 自定义 schema 不能省略,并且必须与表一起转义。
SELECT * FROM mypg.mydb.`custom_schema.test_table2`
SELECT * FROM mydb.`custom_schema.test_table2`;
SELECT * FROM `custom_schema.test_table2`;
数据类型映射 #
Flink 支持连接到多个使用方言(dialect)的数据库,如 MySQL、PostgreSQL、Derby 等。其中,Derby 通常是用于测试目的。下表列出了从关系数据库数据类型到 Flink SQL 数据类型的类型映射,映射表可以使得在 Flink 中定义 JDBC 表更加简单。