高级配置

高级配置主题 #

Flink 自身由一组类和依赖项组成,这些共同构成了 Flink 运行时的核心,在 Flink 应用程序启动时必须存在,会提供诸如通信协调、网络管理、检查点、容错、API、算子(如窗口)、资源管理等领域的服务。

这些核心类和依赖项都打包在 flink-dist.jar,可以在下载的发行版 /lib 文件夹中找到,也是 Flink 容器镜像的基础部分。您可以将其近似地看作是包含 StringList 等公用类的 Java 核心库。

为了保持核心依赖项尽可能小并避免依赖冲突,Flink Core Dependencies 不包含任何连接器或库(如 CEP、SQL、ML),以避免在类路径中有过多的类和依赖项。

Flink 发行版的 /lib 目录里还有包括常用模块在内的各种 JAR 文件,例如 执行 Table 作业的必需模块 、一组连接器和 format。默认情况下会自动加载,若要禁止加载只需将它们从 classpath 中的 /lib 目录中删除即可。

Flink 还在 /opt 文件夹下提供了额外的可选依赖项,可以通过移动这些 JAR 文件到 /lib 目录来启用这些依赖项。

有关类加载的更多细节,请查阅 Flink 类加载

Scala 版本 #

不同的 Scala 版本二进制不兼容,所有(传递地)依赖于 Scala 的 Flink 依赖项都以它们构建的 Scala 版本为后缀(如 flink-streaming-scala_2.12)。

如果您只使用 Flink 的 Java API,您可以使用任何 Scala 版本。如果您使用 Flink 的 Scala API,则需要选择与应用程序的 Scala 匹配的 Scala 版本。

有关如何为特定 Scala 版本构建 Flink 的细节,请查阅构建指南

2.12.8 之后的 Scala 版本与之前的 2.12.x 版本二进制不兼容,使 Flink 项目无法将其 2.12.x 版本直接升级到 2.12.8 以上。您可以按照构建指南在本地为更高版本的 Scala 构建 Flink 。为此,您需要在构建时添加 -Djapicmp.skip 以跳过二进制兼容性检查。

有关更多细节,请查阅 Scala 2.12.8 版本说明。相关部分指出:

第二项修改是二进制不兼容的:2.12.8 编译器忽略了由更早版本的 2.12 编译器生成的某些方法。然而我们相信这些方法永远不会被使用,现有的编译代码仍可工作。有关更多详细信息,请查阅pull request 描述

Table 依赖剖析 #

Flink 发行版默认包含执行 Flink SQL 任务的必要 JAR 文件(位于 /lib 目录),主要有:

  • flink-table-api-java-uber-1.20.0.jar → 包含所有的 Java API;
  • flink-table-runtime-1.20.0.jar → 包含 Table 运行时;
  • flink-table-planner-loader-1.20.0.jar → 包含查询计划器。
以前,这些 JAR 都打包进了 flink-table.jar,自从 Flink 1.15 开始,已将其划分成三个 JAR,以允许用户使用 flink-table-planner-loader-1.20.0.jar 充当 flink-table-planner_2.12-1.20.0.jar

虽然 Table Java API 内置于发行版中,但默认情况下不包含 Table Scala API。在 Flink Scala API 中使用格式和连接器时,您需要手动下载这些 JAR 包并将其放到发行版的 /lib 文件夹中(推荐),或者将它们打包为 Flink SQL 作业的 uber/fat JAR 包中的依赖项。

有关更多细节,请查阅如何连接外部系统

Table Planner 和 Table Planner 加载器 #

从 Flink 1.15 开始,发行版包含两个 planner:

  • flink-table-planner_2.12-1.20.0.jar, 位于 /opt 目录, 包含查询计划器;
  • flink-table-planner-loader-1.20.0.jar, 位于 /lib 目录默认被加载, 包含隐藏在单独的 classpath 里的查询计划器 (您无法直接使用 io.apache.flink.table.planner 包)。

这两个 planner JAR 文件的代码功能相同,但打包方式不同。若使用第一个文件,您必须使用与其相同版本的 Scala;若使用第二个,由于 Scala 已经被打包进该文件里,您不需要考虑 Scala 版本问题。

默认情况下,发行版使用 flink-table-planner-loader。如果想使用内部查询计划器,您可以换掉 JAR 包(拷贝 flink-table-planner_2.12.jar 并复制到发行版的 /lib 目录)。请注意,此时会被限制用于 Flink 发行版的 Scala 版本。

这两个 planner 无法同时存在于 classpath,如果您在 /lib 目录同时加载他们,Table 任务将会失败。
在即将发布的 Flink 版本中,我们将停止在 Flink 发行版中发布 flink-table-planner_2.12 组件。我们强烈建议迁移您的作业/自定义连接器/格式以使用前述 API 模块,而不依赖此内部 planner。如果您需要 planner 中尚未被 API 模块暴露的一些功能,请与社区讨论。

Hadoop 依赖 #

一般规则: 没有必要直接添加 Hadoop 依赖到您的应用程序里,如果您想将 Flink 与 Hadoop 一起使用,您需要有一个包含 Hadoop 依赖项的 Flink 系统,而不是添加 Hadoop 作为应用程序依赖项。换句话说,Hadoop 必须是 Flink 系统本身的依赖,而不是用户代码的依赖。Flink 将使用 HADOOP_CLASSPATH 环境变量指定 Hadoop 依赖项,可以这样设置:

export HADOOP_CLASSPATH=`hadoop classpath`

这样设计有两个主要原因:

  • 一些 Hadoop 交互可能在用户应用程序启动之前就发生在 Flink 内核。其中包括为检查点配置 HDFS、通过 Hadoop 的 Kerberos 令牌进行身份验证或在 YARN 上部署;

  • Flink 的反向类加载方式在核心依赖项中隐藏了许多传递依赖项。这不仅适用于 Flink 自己的核心依赖项,也适用于已有的 Hadoop 依赖项。这样,应用程序可以使用相同依赖项的不同版本,而不会遇到依赖项冲突。当依赖树变得非常大时,这非常有用。

如果您在 IDE 内开发或测试期间需要 Hadoop 依赖项(比如用于 HDFS 访问),应该限定这些依赖项的使用范围(如 testprovided)。