Gelly provides a collection of scalable graph generators. Each generator is
Graph generators are configured using the builder pattern. The parallelism of generator
operators can be set explicitly by calling setParallelism(parallelism)
. Lowering the
parallelism will reduce the allocation of memory and network buffers.
Graph-specific configuration must be called first, then configuration common to all
generators, and lastly the call to generate()
. The following example configures a
grid graph with two dimensions, configures the parallelism, and generates the graph.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
boolean wrapEndpoints = false;
int parallelism = 4;
Graph<LongValue, NullValue, NullValue> graph = new GridGraph(env)
.addDimension(2, wrapEndpoints)
.addDimension(4, wrapEndpoints)
.setParallelism(parallelism)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.GridGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
wrapEndpoints = false
val parallelism = 4
val graph = new GridGraph(env.getJavaEnv).addDimension(2, wrapEndpoints).addDimension(4, wrapEndpoints).setParallelism(parallelism).generate()
A circulant graph is an oriented graph configured with one or more contiguous ranges of offsets. Edges connect integer vertex IDs whose difference equals a configured offset. The circulant graph with no offsets is the empty graph and the graph with the maximum range is the complete graph.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 5;
Graph<LongValue, NullValue, NullValue> graph = new CirculantGraph(env, vertexCount)
.addRange(1, 2)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.CirculantGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val graph = new CirculantGraph(env.getJavaEnv, vertexCount).addRange(1, 2).generate()
An undirected graph connecting every distinct pair of vertices.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 5;
Graph<LongValue, NullValue, NullValue> graph = new CompleteGraph(env, vertexCount)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.CompleteGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val graph = new CompleteGraph(env.getJavaEnv, vertexCount).generate()
An undirected graph where the set of edges form a single cycle by connecting each vertex to two adjacent vertices in a chained loop.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 5;
Graph<LongValue, NullValue, NullValue> graph = new CycleGraph(env, vertexCount)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.CycleGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val graph = new CycleGraph(env.getJavaEnv, vertexCount).generate()
An echo graph is a
circulant graph with n
vertices defined by the width of a
single range of offsets centered at n/2
. A vertex is connected to ‘far’
vertices, which connect to ‘near’ vertices, which connect to ‘far’ vertices, ….
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 5;
long vertexDegree = 2;
Graph<LongValue, NullValue, NullValue> graph = new EchoGraph(env, vertexCount, vertexDegree)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.EchoGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val vertexDegree = 2
val graph = new EchoGraph(env.getJavaEnv, vertexCount, vertexDegree).generate()
A graph containing no edges.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 5;
Graph<LongValue, NullValue, NullValue> graph = new EmptyGraph(env, vertexCount)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.EmptyGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val graph = new EmptyGraph(env.getJavaEnv, vertexCount).generate()
An undirected graph connecting vertices in a regular tiling in one or more dimensions.
Each dimension is configured separately. When the dimension size is at least three the
endpoints are optionally connected by setting wrapEndpoints
. Changing the following
example to addDimension(4, true)
would connect 0
to 3
and 4
to 7
.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
boolean wrapEndpoints = false;
Graph<LongValue, NullValue, NullValue> graph = new GridGraph(env)
.addDimension(2, wrapEndpoints)
.addDimension(4, wrapEndpoints)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.GridGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val wrapEndpoints = false
val graph = new GridGraph(env.getJavaEnv).addDimension(2, wrapEndpoints).addDimension(4, wrapEndpoints).generate()
An undirected graph where edges form an n
-dimensional hypercube. Each vertex
in a hypercube connects to one other vertex in each dimension.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long dimensions = 3;
Graph<LongValue, NullValue, NullValue> graph = new HypercubeGraph(env, dimensions)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.HypercubeGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val dimensions = 3
val graph = new HypercubeGraph(env.getJavaEnv, dimensions).generate()
An undirected graph where the set of edges form a single path by connecting
two endpoint
vertices with degree 1
and all midpoint vertices with degree
2
. A path graph can be formed by removing a single edge from a cycle graph.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 5
Graph<LongValue, NullValue, NullValue> graph = new PathGraph(env, vertexCount)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.PathGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val graph = new PathGraph(env.getJavaEnv, vertexCount).generate()
A directed power-law multigraph generated using the Recursive Matrix (R-Mat) model.
RMat is a stochastic generator configured with a source of randomness implementing the
RandomGenerableFactory
interface. Provided implementations are JDKRandomGeneratorFactory
and MersenneTwisterFactory
. These generate an initial sequence of random values which are
then used as seeds for generating the edges.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
RandomGenerableFactory<JDKRandomGenerator> rnd = new JDKRandomGeneratorFactory();
int vertexCount = 1 << scale;
int edgeCount = edgeFactor * vertexCount;
Graph<LongValue, NullValue, NullValue> graph = new RMatGraph<>(env, rnd, vertexCount, edgeCount)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.RMatGraph
val env = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 1 << scale
val edgeCount = edgeFactor * vertexCount
val graph = new RMatGraph(env.getJavaEnv, rnd, vertexCount, edgeCount).generate()
The default RMat contants can be overridden as shown in the following example. The contants define the interdependence of bits from each generated edge’s source and target labels. The RMat noise can be enabled and progressively perturbs the contants while generating each edge.
The RMat generator can be configured to produce a simple graph by removing self-loops and duplicate edges. Symmetrization is performed either by a “clip-and-flip” throwing away the half matrix above the diagonal or a full “flip” preserving and mirroring all edges.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
RandomGenerableFactory<JDKRandomGenerator> rnd = new JDKRandomGeneratorFactory();
int vertexCount = 1 << scale;
int edgeCount = edgeFactor * vertexCount;
boolean clipAndFlip = false;
Graph<LongValue, NullValue, NullValue> graph = new RMatGraph<>(env, rnd, vertexCount, edgeCount)
.setConstants(0.57f, 0.19f, 0.19f)
.setNoise(true, 0.10f)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.RMatGraph
val env = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 1 << scale
val edgeCount = edgeFactor * vertexCount
clipAndFlip = false
val graph = new RMatGraph(env.getJavaEnv, rnd, vertexCount, edgeCount).setConstants(0.57f, 0.19f, 0.19f).setNoise(true, 0.10f).generate()
An undirected graph containing isolated two-paths where every vertex has degree
1
.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexPairCount = 4
// note: configured with the number of vertex pairs
Graph<LongValue, NullValue, NullValue> graph = new SingletonEdgeGraph(env, vertexPairCount)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.SingletonEdgeGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexPairCount = 4
// note: configured with the number of vertex pairs
val graph = new SingletonEdgeGraph(env.getJavaEnv, vertexPairCount).generate()
An undirected graph containing a single central vertex connected to all other leaf vertices.
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 6;
Graph<LongValue, NullValue, NullValue> graph = new StarGraph(env, vertexCount)
.generate();
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.StarGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 6
val graph = new StarGraph(env.getJavaEnv, vertexCount).generate()