The ProcessFunction
is a low-level stream processing operation, giving access to the basic building blocks of
all (acyclic) streaming applications:
The ProcessFunction
can be thought of as a FlatMapFunction
with access to keyed state and timers. It handles events
by being invoked for each event received in the input stream(s).
For fault-tolerant state, the ProcessFunction
gives access to Flink’s keyed state, accessible via the
RuntimeContext
, similar to the way other stateful functions can access keyed state.
The timers allow applications to react to changes in processing time and in event time.
Every call to the function processElement(...)
gets a Context
object which gives access to the element’s
event time timestamp, and to the TimerService. The TimerService
can be used to register callbacks for future
event-/processing-time instants. When a timer’s particular time is reached, the onTimer(...)
method is
called. During that call, all states are again scoped to the key with which the timer was created, allowing
timers to manipulate keyed state.
Note If you want to access keyed state and timers you have
to apply the ProcessFunction
on a keyed stream:
stream.keyBy(...).process(new MyProcessFunction())
To realize low-level operations on two inputs, applications can use CoProcessFunction
. This
function is bound to two different inputs and gets individual calls to processElement1(...)
and
processElement2(...)
for records from the two different inputs.
Implementing a low level join typically follows this pattern:
For example, you might be joining customer data to financial trades, while keeping state for the customer data. If you care about having complete and deterministic joins in the face of out-of-order events, you can use a timer to evaluate and emit the join for a trade when the watermark for the customer data stream has passed the time of that trade.
The following example maintains counts per key, and emits a key/count pair whenever a minute passes (in event time) without an update for that key:
ValueState
, which is implicitly scoped by key.ProcessFunction
increments the counter and sets the last-modification timestampNote This simple example could have been implemented with
session windows. We use ProcessFunction
here to illustrate the basic pattern it provides.
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.ProcessFunction.Context;
import org.apache.flink.streaming.api.functions.ProcessFunction.OnTimerContext;
import org.apache.flink.util.Collector;
// the source data stream
DataStream<Tuple2<String, String>> stream = ...;
// apply the process function onto a keyed stream
DataStream<Tuple2<String, Long>> result = stream
.keyBy(0)
.process(new CountWithTimeoutFunction());
/**
* The data type stored in the state
*/
public class CountWithTimestamp {
public String key;
public long count;
public long lastModified;
}
/**
* The implementation of the ProcessFunction that maintains the count and timeouts
*/
public class CountWithTimeoutFunction extends ProcessFunction<Tuple2<String, String>, Tuple2<String, Long>> {
/** The state that is maintained by this process function */
private ValueState<CountWithTimestamp> state;
@Override
public void open(Configuration parameters) throws Exception {
state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", CountWithTimestamp.class));
}
@Override
public void processElement(Tuple2<String, String> value, Context ctx, Collector<Tuple2<String, Long>> out)
throws Exception {
// retrieve the current count
CountWithTimestamp current = state.value();
if (current == null) {
current = new CountWithTimestamp();
current.key = value.f0;
}
// update the state's count
current.count++;
// set the state's timestamp to the record's assigned event time timestamp
current.lastModified = ctx.timestamp();
// write the state back
state.update(current);
// schedule the next timer 60 seconds from the current event time
ctx.timerService().registerEventTimeTimer(current.lastModified + 60000);
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<String, Long>> out)
throws Exception {
// get the state for the key that scheduled the timer
CountWithTimestamp result = state.value();
// check if this is an outdated timer or the latest timer
if (timestamp == result.lastModified + 60000) {
// emit the state on timeout
out.collect(new Tuple2<String, Long>(result.key, result.count));
}
}
}
import org.apache.flink.api.common.state.ValueState
import org.apache.flink.api.common.state.ValueStateDescriptor
import org.apache.flink.streaming.api.functions.ProcessFunction
import org.apache.flink.streaming.api.functions.ProcessFunction.Context
import org.apache.flink.streaming.api.functions.ProcessFunction.OnTimerContext
import org.apache.flink.util.Collector
// the source data stream
val stream: DataStream[Tuple2[String, String]] = ...
// apply the process function onto a keyed stream
val result: DataStream[Tuple2[String, Long]] = stream
.keyBy(0)
.process(new CountWithTimeoutFunction())
/**
* The data type stored in the state
*/
case class CountWithTimestamp(key: String, count: Long, lastModified: Long)
/**
* The implementation of the ProcessFunction that maintains the count and timeouts
*/
class CountWithTimeoutFunction extends ProcessFunction[(String, String), (String, Long)] {
/** The state that is maintained by this process function */
lazy val state: ValueState[CountWithTimestamp] = getRuntimeContext
.getState(new ValueStateDescriptor[CountWithTimestamp]("myState", classOf[CountWithTimestamp]))
override def processElement(value: (String, String), ctx: Context, out: Collector[(String, Long)]): Unit = {
// initialize or retrieve/update the state
val current: CountWithTimestamp = state.value match {
case null =>
CountWithTimestamp(value._1, 1, ctx.timestamp)
case CountWithTimestamp(key, count, lastModified) =>
CountWithTimestamp(key, count + 1, ctx.timestamp)
}
// write the state back
state.update(current)
// schedule the next timer 60 seconds from the current event time
ctx.timerService.registerEventTimeTimer(current.lastModified + 60000)
}
override def onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[(String, Long)]): Unit = {
state.value match {
case CountWithTimestamp(key, count, lastModified) if (timestamp == lastModified + 60000) =>
out.collect((key, count))
case _ =>
}
}
}