本文档是 Apache Flink 的旧版本。建议访问 最新的稳定版本

Python API 教程

在该教程中,我们会从零开始,介绍如何创建一个Flink Python项目及运行Python Table API程序。

创建一个Python Table API项目

首先,使用您最熟悉的IDE创建一个Python项目,并且安装PyFlink。 目前PyFlink已经上传至PyPI,可通过pip安装:

# 安装PyFlink 1.9的最新版本
$ python -m pip install apache-flink==1.9.*

如果您想从源码安装,请参考构建PyFlink了解详细信息。

编写Flink Python Table API程序的第一步是创建BatchTableEnvironment (或者StreamTableEnvironment,如果你要创建一个流式作业)。这是Python Table API作业的入口类。

exec_env = ExecutionEnvironment.get_execution_environment()
exec_env.set_parallelism(1)
t_config = TableConfig()
t_env = BatchTableEnvironment.create(exec_env, t_config)

ExecutionEnvironment (或者StreamExecutionEnvironment,如果你要创建一个流式作业) 可以用来设置执行参数,比如重启策略,缺省并发值等。

TableConfig可以用来设置缺省的catalog名字,自动生成代码时方法大小的阈值等.

接下来,我们将介绍如何创建源表和结果表。

t_env.connect(FileSystem().path('/tmp/input')) \
    .with_format(OldCsv()
                 .field('word', DataTypes.STRING())) \
    .with_schema(Schema()
                 .field('word', DataTypes.STRING())) \
    .register_table_source('mySource')

t_env.connect(FileSystem().path('/tmp/output')) \
    .with_format(OldCsv()
                 .field_delimiter('\t')
                 .field('word', DataTypes.STRING())
                 .field('count', DataTypes.BIGINT())) \
    .with_schema(Schema()
                 .field('word', DataTypes.STRING())
                 .field('count', DataTypes.BIGINT())) \
    .register_table_sink('mySink')

上面的程序展示了如何创建及在ExecutionEnvironment中注册表名分别为mySourcemySink的表。 其中,源表mySource有一列: word,该表代表了从输入文件/tmp/input中读取的单词; 结果表mySink有两列: word和count,该表会将计算结果输出到文件/tmp/output中,字段之间使用\t作为分隔符。

接下来,我们介绍如何创建一个作业:该作业读取表mySource中的数据,进行一些变换,然后将结果写入表mySink

t_env.scan('mySource') \
    .group_by('word') \
    .select('word, count(1)') \
    .insert_into('mySink')

最后,需要做的就是启动Flink Python Table API作业。上面所有的操作,比如创建源表 进行变换以及写入结果表的操作都只是构建作业逻辑图,只有当t_env.execute(job_name)被调用的时候, 作业才会被真正提交到集群或者本地进行执行。

t_env.execute("python_job")

该教程的完整代码如下:

from pyflink.dataset import ExecutionEnvironment
from pyflink.table import TableConfig, DataTypes, BatchTableEnvironment
from pyflink.table.descriptors import Schema, OldCsv, FileSystem

exec_env = ExecutionEnvironment.get_execution_environment()
exec_env.set_parallelism(1)
t_config = TableConfig()
t_env = BatchTableEnvironment.create(exec_env, t_config)

t_env.connect(FileSystem().path('/tmp/input')) \
    .with_format(OldCsv()
                 .field('word', DataTypes.STRING())) \
    .with_schema(Schema()
                 .field('word', DataTypes.STRING())) \
    .register_table_source('mySource')

t_env.connect(FileSystem().path('/tmp/output')) \
    .with_format(OldCsv()
                 .field_delimiter('\t')
                 .field('word', DataTypes.STRING())
                 .field('count', DataTypes.BIGINT())) \
    .with_schema(Schema()
                 .field('word', DataTypes.STRING())
                 .field('count', DataTypes.BIGINT())) \
    .register_table_sink('mySink')

t_env.scan('mySource') \
    .group_by('word') \
    .select('word, count(1)') \
    .insert_into('mySink')

t_env.execute("python_job")

首先,你需要在文件 “/tmp/input” 中准备好输入数据。你可以选择通过如下命令准备输入数据:

$ echo "flink\npyflink\nflink" > /tmp/input

接下来,可以在命令行中运行作业(假设作业名为WordCount.py)(注意:如果输出结果文件“/tmp/output”已经存在,你需要先删除文件,否则程序将无法正确运行起来):

$ python WordCount.py

上述命令会构建Python Table API程序,并在本地mini cluster中运行。如果想将作业提交到远端集群执行, 可以参考作业提交示例

最后,你可以通过如下命令查看你的运行结果:

$ cat /tmp/output
flink	2
pyflink	1

上述教程介绍了如何编写并运行一个Flink Python Table API程序,如果想了解Flink Python Table API 的更多信息,可以参考Flink Python Table API文档