One Hot Encoder
This documentation is for an out-of-date version of Apache Flink Machine Learning Library. We recommend you use the latest stable version.

One Hot Encoder #

One-hot encoding maps a categorical feature, represented as a label index, to a binary vector with at most a single one-value indicating the presence of a specific feature value from among the set of all feature values. This encoding allows algorithms which expect continuous features, such as Logistic Regression, to use categorical features.

OneHotEncoder can transform multiple columns, returning an one-hot-encoded output vector column for each input column.

Input Columns #

Param name Type Default Description
inputCols Integer null Label index

Output Columns #

Param name Type Default Description
outputCols Vector null Encoded binary vector

Parameters #

Key Default Type Required Description
inputCols null String yes Input column names.
outputCols null String yes Output column names.
handleInvalid HasHandleInvalid.ERROR_INVALID String No Strategy to handle invalid entries. Supported values: HasHandleInvalid.ERROR_INVALID, HasHandleInvalid.SKIP_INVALID
dropLast true Boolean no Whether to drop the last category.

Examples #

import org.apache.flink.ml.feature.onehotencoder.OneHotEncoder;
import org.apache.flink.ml.feature.onehotencoder.OneHotEncoderModel;

List<Row> trainData = Arrays.asList(Row.of(0.0), Row.of(1.0), Row.of(2.0), Row.of(0.0));
Table trainTable = tEnv.fromDataStream(env.fromCollection(trainData)).as("input");

List<Row> predictData = Arrays.asList(Row.of(0.0), Row.of(1.0), Row.of(2.0));
Table predictTable = tEnv.fromDataStream(env.fromCollection(predictData)).as("input");

OneHotEncoder estimator = new OneHotEncoder().setInputCols("input").setOutputCols("output");
OneHotEncoderModel model = estimator.fit(trainTable);
Table outputTable = model.transform(predictTable)[0];

outputTable.execute().print();