import org.apache.flink.ml.common.param.HasHandleInvalid;
import org.apache.flink.ml.feature.bucketizer.Bucketizer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
import java.util.Arrays;
/** Simple program that creates a Bucketizer instance and uses it for feature engineering. */
public class BucketizerExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input data.
DataStream<Row> inputStream = env.fromElements(Row.of(-0.5, 0.0, 1.0, 0.0));
Table inputTable = tEnv.fromDataStream(inputStream).as("f1", "f2", "f3", "f4");
// Creates a Bucketizer object and initializes its parameters.
Double[][] splitsArray =
new Double[][] {
new Double[] {-0.5, 0.0, 0.5},
new Double[] {-1.0, 0.0, 2.0},
new Double[] {Double.NEGATIVE_INFINITY, 10.0, Double.POSITIVE_INFINITY},
new Double[] {Double.NEGATIVE_INFINITY, 1.5, Double.POSITIVE_INFINITY}
};
Bucketizer bucketizer =
new Bucketizer()
.setInputCols("f1", "f2", "f3", "f4")
.setOutputCols("o1", "o2", "o3", "o4")
.setSplitsArray(splitsArray)
.setHandleInvalid(HasHandleInvalid.SKIP_INVALID);
// Uses the Bucketizer object for feature transformations.
Table outputTable = bucketizer.transform(inputTable)[0];
// Extracts and displays the results.
for (CloseableIterator<Row> it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
double[] inputValues = new double[bucketizer.getInputCols().length];
double[] outputValues = new double[bucketizer.getInputCols().length];
for (int i = 0; i < inputValues.length; i++) {
inputValues[i] = (double) row.getField(bucketizer.getInputCols()[i]);
outputValues[i] = (double) row.getField(bucketizer.getOutputCols()[i]);
}
System.out.printf(
"Input Values: %s\tOutput Values: %s\n",
Arrays.toString(inputValues), Arrays.toString(outputValues));
}
}
}
# Simple program that creates a Bucketizer instance and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.feature.bucketizer import Bucketizer
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input data
input_data = t_env.from_data_stream(
env.from_collection([
(-0.5, 0.0, 1.0, 0.0),
],
type_info=Types.ROW_NAMED(
['f1', 'f2', 'f3', 'f4'],
[Types.DOUBLE(), Types.DOUBLE(), Types.DOUBLE(), Types.DOUBLE()])
))
# create a bucketizer object and initialize its parameters
splits_array = [
[-0.5, 0.0, 0.5],
[-1.0, 0.0, 2.0],
[float('-inf'), 10.0, float('inf')],
[float('-inf'), 1.5, float('inf')],
]
bucketizer = Bucketizer() \
.set_input_cols('f1', 'f2', 'f3', 'f4') \
.set_output_cols('o1', 'o2', 'o3', 'o4') \
.set_splits_array(splits_array)
# use the bucketizer model for feature engineering
output = bucketizer.transform(input_data)[0]
# extract and display the results
field_names = output.get_schema().get_field_names()
input_values = [None for _ in bucketizer.get_input_cols()]
output_values = [None for _ in bucketizer.get_input_cols()]
for result in t_env.to_data_stream(output).execute_and_collect():
for i in range(len(bucketizer.get_input_cols())):
input_values[i] = result[field_names.index(bucketizer.get_input_cols()[i])]
output_values[i] = result[field_names.index(bucketizer.get_output_cols()[i])]
print('Input Values: ' + str(input_values) + '\tOutput Values: ' + str(output_values))