import org.apache.flink.ml.feature.dct.DCT;
import org.apache.flink.ml.linalg.Vector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
import java.util.Arrays;
import java.util.List;
/** Simple program that creates a DCT instance and uses it for feature engineering. */
public class DCTExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input data.
List<Vector> inputData =
Arrays.asList(
Vectors.dense(1.0, 1.0, 1.0, 1.0), Vectors.dense(1.0, 0.0, -1.0, 0.0));
Table inputTable = tEnv.fromDataStream(env.fromCollection(inputData)).as("input");
// Creates a DCT object and initializes its parameters.
DCT dct = new DCT();
// Uses the DCT object for feature transformations.
Table outputTable = dct.transform(inputTable)[0];
// Extracts and displays the results.
for (CloseableIterator<Row> it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
Vector inputValue = row.getFieldAs(dct.getInputCol());
Vector outputValue = row.getFieldAs(dct.getOutputCol());
System.out.printf("Input Value: %s\tOutput Value: %s\n", inputValue, outputValue);
}
}
}
# Simple program that creates a DCT instance and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.feature.dct import DCT
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input data
input_data = t_env.from_data_stream(
env.from_collection([
(Vectors.dense(1.0, 1.0, 1.0, 1.0),),
(Vectors.dense(1.0, 0.0, -1.0, 0.0),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])))
# create a DCT object and initialize its parameters
dct = DCT()
# use the dct for feature engineering
output = dct.transform(input_data)[0]
# extract and display the results
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_value = result[field_names.index(dct.get_input_col())]
output_value = result[field_names.index(dct.get_output_col())]
print('Input Value: ' + str(input_value) + '\tOutput Value: ' + str(output_value))