import org.apache.flink.ml.feature.standardscaler.StandardScaler;
import org.apache.flink.ml.feature.standardscaler.StandardScalerModel;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
/** Simple program that trains a StandardScaler model and uses it for feature engineering. */
public class StandardScalerExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input data.
DataStream<Row> inputStream =
env.fromElements(
Row.of(Vectors.dense(-2.5, 9, 1)),
Row.of(Vectors.dense(1.4, -5, 1)),
Row.of(Vectors.dense(2, -1, -2)));
Table inputTable = tEnv.fromDataStream(inputStream).as("input");
// Creates a StandardScaler object and initializes its parameters.
StandardScaler standardScaler = new StandardScaler();
// Trains the StandardScaler Model.
StandardScalerModel model = standardScaler.fit(inputTable);
// Uses the StandardScaler Model for predictions.
Table outputTable = model.transform(inputTable)[0];
// Extracts and displays the results.
for (CloseableIterator<Row> it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
DenseVector inputValue = (DenseVector) row.getField(standardScaler.getInputCol());
DenseVector outputValue = (DenseVector) row.getField(standardScaler.getOutputCol());
System.out.printf("Input Value: %s\tOutput Value: %s\n", inputValue, outputValue);
}
}
}
# Simple program that trains a StandardScaler model and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.feature.standardscaler import StandardScaler
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input data
input_data = t_env.from_data_stream(
env.from_collection([
(Vectors.dense(-2.5, 9, 1),),
(Vectors.dense(1.4, -5, 1),),
(Vectors.dense(2, -1, -2),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])
))
# create a standard-scaler object and initialize its parameters
standard_scaler = StandardScaler()
# train the standard-scaler model
model = standard_scaler.fit(input_data)
# use the standard-scaler model for predictions
output = model.transform(input_data)[0]
# extract and display the results
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_value = result[field_names.index(standard_scaler.get_input_col())]
output_value = result[field_names.index(standard_scaler.get_output_col())]
print('Input Value: ' + str(input_value) + ' \tOutput Value: ' + str(output_value))