1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::collections::VecDeque;
use std::future::Future;
use std::pin::Pin;
use std::task::Context;
use std::task::Poll;

use futures::poll;
use futures::stream::FuturesOrdered;
use futures::FutureExt;
use futures::StreamExt;

use crate::*;

/// BoxedFuture is the type alias of [`futures::future::BoxFuture`].
///
/// We will switch to [`futures::future::LocalBoxFuture`] on wasm32 target.
#[cfg(not(target_arch = "wasm32"))]
pub type BoxedFuture<'a, T> = futures::future::BoxFuture<'a, T>;
#[cfg(target_arch = "wasm32")]
pub type BoxedFuture<'a, T> = futures::future::LocalBoxFuture<'a, T>;

/// BoxedStaticFuture is the type alias of [`futures::future::BoxFuture`].
///
/// We will switch to [`futures::future::LocalBoxFuture`] on wasm32 target.
#[cfg(not(target_arch = "wasm32"))]
pub type BoxedStaticFuture<T> = futures::future::BoxFuture<'static, T>;
#[cfg(target_arch = "wasm32")]
pub type BoxedStaticFuture<T> = futures::future::LocalBoxFuture<'static, T>;

/// MaybeSend is a marker to determine whether a type is `Send` or not.
/// We use this trait to wrap the `Send` requirement for wasm32 target.
///
/// # Safety
///
/// MaybeSend equivalent to `Send` on non-wasm32 target. And it's empty
/// on wasm32 target.
#[cfg(not(target_arch = "wasm32"))]
pub unsafe trait MaybeSend: Send {}
#[cfg(target_arch = "wasm32")]
pub unsafe trait MaybeSend {}

#[cfg(not(target_arch = "wasm32"))]
unsafe impl<T: Send> MaybeSend for T {}
#[cfg(target_arch = "wasm32")]
unsafe impl<T> MaybeSend for T {}

/// ConcurrentTasks is used to execute tasks concurrently.
///
/// ConcurrentTasks has two generic types:
///
/// - `I` represents the input type of the task.
/// - `O` represents the output type of the task.
pub struct ConcurrentTasks<I, O> {
    /// The executor to execute the tasks.
    ///
    /// If user doesn't provide an executor, the tasks will be executed with the default executor.
    executor: Executor,
    /// The factory to create the task.
    ///
    /// Caller of ConcurrentTasks must provides a factory to create the task for executing.
    ///
    /// The factory must accept an input and return a future that resolves to a tuple of input and
    /// output result. If the given result is error, the error will be returned to users and the
    /// task will be retried.
    factory: fn(I) -> BoxedStaticFuture<(I, Result<O>)>,

    /// `tasks` holds the ongoing tasks.
    ///
    /// Please keep in mind that all tasks are running in the background by `Executor`. We only need
    /// to poll the tasks to see if they are ready.
    ///
    /// Dropping task without `await` it will cancel the task.
    tasks: VecDeque<Task<(I, Result<O>)>>,
    /// `results` stores the successful results.
    results: VecDeque<O>,

    /// hitting the last unrecoverable error.
    ///
    /// If concurrent tasks hit an unrecoverable error, it will stop executing new tasks and return
    /// an unrecoverable error to users.
    errored: bool,
}

impl<I: Send + 'static, O: Send + 'static> ConcurrentTasks<I, O> {
    /// Create a new concurrent tasks with given executor, concurrent and factory.
    ///
    /// The factory is a function pointer that shouldn't capture any context.
    pub fn new(
        executor: Executor,
        concurrent: usize,
        factory: fn(I) -> BoxedStaticFuture<(I, Result<O>)>,
    ) -> Self {
        Self {
            executor,
            factory,

            tasks: VecDeque::with_capacity(concurrent),
            results: VecDeque::with_capacity(concurrent),
            errored: false,
        }
    }

    /// Return true if the tasks are running concurrently.
    #[inline]
    fn is_concurrent(&self) -> bool {
        self.tasks.capacity() > 1
    }

    /// Clear all tasks and results.
    ///
    /// All ongoing tasks will be canceled.
    pub fn clear(&mut self) {
        self.tasks.clear();
        self.results.clear();
    }

    /// Check if there are remaining space to push new tasks.
    #[inline]
    pub fn has_remaining(&self) -> bool {
        self.tasks.len() < self.tasks.capacity()
    }

    /// Chunk if there are remaining results to fetch.
    #[inline]
    pub fn has_result(&self) -> bool {
        !self.results.is_empty()
    }

    /// Execute the task with given input.
    ///
    /// - Execute the task in the current thread if is not concurrent.
    /// - Execute the task in the background if there are available slots.
    /// - Await the first task in the queue if there is no available slots.
    pub async fn execute(&mut self, input: I) -> Result<()> {
        if self.errored {
            return Err(Error::new(
                ErrorKind::Unexpected,
                "concurrent tasks met an unrecoverable error",
            ));
        }

        // Short path for non-concurrent case.
        if !self.is_concurrent() {
            let (_, o) = (self.factory)(input).await;
            return match o {
                Ok(o) => {
                    self.results.push_back(o);
                    Ok(())
                }
                // We don't need to rebuild the future if it's not concurrent.
                Err(err) => Err(err),
            };
        }

        loop {
            // Try poll once to see if there is any ready task.
            if let Some(task) = self.tasks.front_mut() {
                if let Poll::Ready((i, o)) = poll!(task) {
                    match o {
                        Ok(o) => {
                            let _ = self.tasks.pop_front();
                            self.results.push_back(o)
                        }
                        Err(err) => {
                            // Retry this task if the error is temporary
                            if err.is_temporary() {
                                self.tasks
                                    .front_mut()
                                    .expect("tasks must have at least one task")
                                    .replace(self.executor.execute((self.factory)(i)));
                            } else {
                                self.clear();
                                self.errored = true;
                            }
                            return Err(err);
                        }
                    }
                }
            }

            // Try to push new task if there are available space.
            if self.tasks.len() < self.tasks.capacity() {
                self.tasks
                    .push_back(self.executor.execute((self.factory)(input)));
                return Ok(());
            }

            // Wait for the next task to be ready.
            let task = self
                .tasks
                .front_mut()
                .expect("tasks must have at least one task");
            let (i, o) = task.await;
            match o {
                Ok(o) => {
                    let _ = self.tasks.pop_front();
                    self.results.push_back(o);
                    continue;
                }
                Err(err) => {
                    // Retry this task if the error is temporary
                    if err.is_temporary() {
                        self.tasks
                            .front_mut()
                            .expect("tasks must have at least one task")
                            .replace(self.executor.execute((self.factory)(i)));
                    } else {
                        self.clear();
                        self.errored = true;
                    }
                    return Err(err);
                }
            }
        }
    }

    /// Fetch the successful result from the result queue.
    pub async fn next(&mut self) -> Option<Result<O>> {
        if self.errored {
            return Some(Err(Error::new(
                ErrorKind::Unexpected,
                "concurrent tasks met an unrecoverable error",
            )));
        }

        if let Some(result) = self.results.pop_front() {
            return Some(Ok(result));
        }

        if let Some(task) = self.tasks.front_mut() {
            let (i, o) = task.await;
            return match o {
                Ok(o) => {
                    let _ = self.tasks.pop_front();
                    Some(Ok(o))
                }
                Err(err) => {
                    // Retry this task if the error is temporary
                    if err.is_temporary() {
                        self.tasks
                            .front_mut()
                            .expect("tasks must have at least one task")
                            .replace(self.executor.execute((self.factory)(i)));
                    } else {
                        self.clear();
                        self.errored = true;
                    }
                    Some(Err(err))
                }
            };
        }

        None
    }
}

/// CONCURRENT_LARGE_THRESHOLD is the threshold to determine whether to use
/// [`FuturesOrdered`] or not.
///
/// The value of `8` is picked by random, no strict benchmark is done.
/// Please raise an issue if you found the value is not good enough or you want to configure
/// this value at runtime.
const CONCURRENT_LARGE_THRESHOLD: usize = 8;

/// ConcurrentFutures is a stream that can hold a stream of concurrent futures.
///
/// - the order of the futures is the same.
/// - the number of concurrent futures is limited by concurrent.
/// - optimized for small number of concurrent futures.
/// - zero cost for non-concurrent futures cases (concurrent == 1).
pub struct ConcurrentFutures<F: Future + Unpin> {
    tasks: Tasks<F>,
    concurrent: usize,
}

/// Tasks is used to hold the entire task queue.
enum Tasks<F: Future + Unpin> {
    /// The special case for concurrent == 1.
    ///
    /// It works exactly the same like `Option<Fut>` in a struct.
    Once(Option<F>),
    /// The special cases for concurrent is small.
    ///
    /// At this case, the cost to loop poll is lower than using `FuturesOrdered`.
    ///
    /// We will replace the future by `TaskResult::Ready` once it's ready to avoid consume it again.
    Small(VecDeque<TaskResult<F>>),
    /// The general cases for large concurrent.
    ///
    /// We use `FuturesOrdered` to avoid huge amount of poll on futures.
    Large(FuturesOrdered<F>),
}

impl<F: Future + Unpin> Unpin for Tasks<F> {}

enum TaskResult<F: Future + Unpin> {
    Polling(F),
    Ready(F::Output),
}

impl<F> ConcurrentFutures<F>
where
    F: Future + Unpin + 'static,
{
    /// Create a new ConcurrentFutures by specifying the number of concurrent futures.
    pub fn new(concurrent: usize) -> Self {
        if (0..2).contains(&concurrent) {
            Self {
                tasks: Tasks::Once(None),
                concurrent,
            }
        } else if (2..=CONCURRENT_LARGE_THRESHOLD).contains(&concurrent) {
            Self {
                tasks: Tasks::Small(VecDeque::with_capacity(concurrent)),
                concurrent,
            }
        } else {
            Self {
                tasks: Tasks::Large(FuturesOrdered::new()),
                concurrent,
            }
        }
    }

    /// Drop all tasks.
    pub fn clear(&mut self) {
        match &mut self.tasks {
            Tasks::Once(fut) => *fut = None,
            Tasks::Small(tasks) => tasks.clear(),
            Tasks::Large(tasks) => *tasks = FuturesOrdered::new(),
        }
    }

    /// Return the length of current concurrent futures (both ongoing and ready).
    pub fn len(&self) -> usize {
        match &self.tasks {
            Tasks::Once(fut) => fut.is_some() as usize,
            Tasks::Small(v) => v.len(),
            Tasks::Large(v) => v.len(),
        }
    }

    /// Return true if there is no futures in the queue.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return the number of remaining space to push new futures.
    pub fn remaining(&self) -> usize {
        self.concurrent - self.len()
    }

    /// Return true if there is remaining space to push new futures.
    pub fn has_remaining(&self) -> bool {
        self.remaining() > 0
    }

    /// Push new future into the end of queue.
    pub fn push_back(&mut self, f: F) {
        debug_assert!(
            self.has_remaining(),
            "concurrent futures must have remaining space"
        );

        match &mut self.tasks {
            Tasks::Once(fut) => {
                *fut = Some(f);
            }
            Tasks::Small(v) => v.push_back(TaskResult::Polling(f)),
            Tasks::Large(v) => v.push_back(f),
        }
    }

    /// Push new future into the start of queue, this task will be exactly the next to poll.
    pub fn push_front(&mut self, f: F) {
        debug_assert!(
            self.has_remaining(),
            "concurrent futures must have remaining space"
        );

        match &mut self.tasks {
            Tasks::Once(fut) => {
                *fut = Some(f);
            }
            Tasks::Small(v) => v.push_front(TaskResult::Polling(f)),
            Tasks::Large(v) => v.push_front(f),
        }
    }
}

impl<F> futures::Stream for ConcurrentFutures<F>
where
    F: Future + Unpin + 'static,
{
    type Item = F::Output;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        match &mut self.get_mut().tasks {
            Tasks::Once(fut) => match fut {
                Some(x) => x.poll_unpin(cx).map(|v| {
                    *fut = None;
                    Some(v)
                }),
                None => Poll::Ready(None),
            },
            Tasks::Small(v) => {
                // Poll all tasks together.
                for task in v.iter_mut() {
                    if let TaskResult::Polling(f) = task {
                        match f.poll_unpin(cx) {
                            Poll::Pending => {}
                            Poll::Ready(res) => {
                                // Replace with ready value if this future has been resolved.
                                *task = TaskResult::Ready(res);
                            }
                        }
                    }
                }

                // Pick the first one to check.
                match v.front_mut() {
                    // Return pending if the first one is still polling.
                    Some(TaskResult::Polling(_)) => Poll::Pending,
                    Some(TaskResult::Ready(_)) => {
                        let res = v.pop_front().unwrap();
                        match res {
                            TaskResult::Polling(_) => unreachable!(),
                            TaskResult::Ready(res) => Poll::Ready(Some(res)),
                        }
                    }
                    None => Poll::Ready(None),
                }
            }
            Tasks::Large(v) => v.poll_next_unpin(cx),
        }
    }
}

#[cfg(test)]
mod tests {
    use std::task::ready;
    use std::time::Duration;

    use futures::future::BoxFuture;
    use futures::Stream;
    use rand::Rng;
    use tokio::time::sleep;

    use super::*;

    struct Lister {
        size: usize,
        idx: usize,
        concurrent: usize,
        tasks: ConcurrentFutures<BoxFuture<'static, usize>>,
    }

    impl Stream for Lister {
        type Item = usize;

        fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
            // Randomly sleep for a while, simulate some io operations that up to 100 microseconds.
            let timeout = Duration::from_micros(rand::thread_rng().gen_range(0..100));
            let idx = self.idx;
            if self.tasks.len() < self.concurrent && self.idx < self.size {
                let fut = async move {
                    tokio::time::sleep(timeout).await;
                    idx
                };
                self.idx += 1;
                self.tasks.push_back(Box::pin(fut));
            }

            if let Some(v) = ready!(self.tasks.poll_next_unpin(cx)) {
                Poll::Ready(Some(v))
            } else {
                Poll::Ready(None)
            }
        }
    }

    #[tokio::test]
    async fn test_concurrent_futures() {
        let cases = vec![
            ("once", 1),
            ("small", CONCURRENT_LARGE_THRESHOLD - 1),
            ("large", CONCURRENT_LARGE_THRESHOLD + 1),
        ];

        for (name, concurrent) in cases {
            let lister = Lister {
                size: 1000,
                idx: 0,
                concurrent,
                tasks: ConcurrentFutures::new(concurrent),
            };
            let expected: Vec<usize> = (0..1000).collect();
            let result: Vec<usize> = lister.collect().await;

            assert_eq!(expected, result, "concurrent futures failed: {}", name);
        }
    }

    #[tokio::test]
    async fn test_concurrent_tasks() {
        let executor = Executor::new();

        let mut tasks = ConcurrentTasks::new(executor, 16, |(i, dur)| {
            Box::pin(async move {
                sleep(dur).await;

                // 5% rate to fail.
                if rand::thread_rng().gen_range(0..100) > 90 {
                    return (
                        (i, dur),
                        Err(Error::new(ErrorKind::Unexpected, "I'm lucky").set_temporary()),
                    );
                }
                ((i, dur), Ok(i))
            })
        });

        let mut ans = vec![];

        for i in 0..10240 {
            // Sleep up to 10ms
            let dur = Duration::from_millis(rand::thread_rng().gen_range(0..10));
            loop {
                let res = tasks.execute((i, dur)).await;
                if res.is_ok() {
                    break;
                }
            }
        }

        loop {
            match tasks.next().await.transpose() {
                Ok(Some(i)) => ans.push(i),
                Ok(None) => break,
                Err(_) => continue,
            }
        }

        assert_eq!(ans, (0..10240).collect::<Vec<_>>())
    }
}