Wicket 10.x Reference Guide

The Apache Software Foundation

Table of Contents

1. Introduction
2. How to use the example code
3. Why should | learn Wicket?
3.1. We all like spaghetti :-) E
3.2. Component oriented frameworks - an overview
3.3. Benefits of component oriented frameworks for web development
3.4. Wicket vs the other component oriented frameworks
4. Wicket says OHello world!O
4.1. Wicket distribution and modules
4.2. Configuration of Wicket applications
4.3. The HomePage class
4.4. Wicket Links
4.5. Summary
5. Wicket as page layout manager
5.1. Header, footer, left menu, content, etcE
5.2. Here comes the inheritance!
5.3. Divide et impera!
5.4. Markup inheritance with the wicket:extend tag
5.5. Summary
6. Keeping control over HTML
6.1. Hiding or disabling a component
6.2. Modifing tag attributes
6.3. Generating tag attribute 'id'
6.4. Creating in-line panels with WebMarkupContainer
6.5. Working with markup fragments
6.6. Adding header contents to the final page
6.7. Using stub markup in our pages/panels
6.8. How to render component body only
6.9. Hiding decorating elements with the wicket:enclosure tag
6.10. Surrounding existing markup with Border
6.11. Summary
7. Components lifecycle
7.1. Lifecycle stages of a component
7.2. Hook methods for component lifecycle
7.3. Initialization stage
7.4. Rendering stage
7.5. Removed stage

7.6. Detached stage

o o oo M M W W W NP

AN W W W W W W W Wwwwww wdhdDh oMM DOMDdMDOMDDM PP PR PR R
W W O ©O© W 0 00 N o A W W N O O ©W 0 0 0o & P N U U W N O

7.7. Summary 43

8. Page versioning and caching 44
8.1. Stateful pages vs stateless 44
8.2. Stateful pages 44
8.3. Stateless pages 49
8.4. Summary 50

9. Under the hood of the request processing 51
9.1. Class Application and request processing 51
9.2. Request and Response classes 51
9.3. The OdirectorO of request processing - RequestCycle 51
9.4. Session Class 55
9.5. Exception handling 59
9.6. Summary 61

10. Wicket Links and URL generation 62
10.1. PageParameters 62
10.2. Bookmarkable links 65
10.3. Automatically creating bookmarkable links with tag wicket:link 65
10.4. External links 67
10.5. Stateless links 68
10.6. Generating structured and clear URLs 68
10.7. Summary 73

11. Wicket models and forms 75
11.1. What is a model? 15
11.2. IModel and Lambda 76
11.3. Models and JavaBeans 78
11.4. Wicket forms 82
11.5. Component DropDownChoice 86
11.6. Model chaining 88
11.7. Detachable models 90
11.8. Using more than one model in a component 93
11.9. Use models! 94
11.10. Summary 94

12. Wicket forms in detall 95
12.1. Default form processing 95
12.2. Form validation and feedback messages 95
12.3. Input value conversion 103
12.4. Validation with JSR 303 106
12.5. Submit form with an IFormSubmittingComponent 108
12.6. Nested forms 112
12.7. Multi-line text input 112

12.8. File upload 113

12.9. Creating complex form components with FormComponentPanel 115

12.10. Stateless form 118
12.11. Working with radio buttons and checkboxes 120
12.12. Selecting multiple values with ListMultipleChoices and Palette 124
12.13. Summary 128
13. Displaying multiple items with repeaters 129
13.1. The RepeatingView Component 129
13.2. The ListView Component 130
13.3. The RefreshingView Component 131
13.4. Pageable repeaters 133
13.5. Summary 135
14. Component queueing 137
14.1. Markup hierarchy and code 137
14.2. Improved auto components 140
14.3. When are components dequeued? 141
14.4. Restrictions of queueing 142
14.5. Summary 142
15. Internationalization with Wicket 143
15.1. Localization 143
15.2. Localization in Wicket 144
15.3. Bundles lookup algorithm 149
15.4. Localization of componentOs choices 153
15.5. Internationalization and Models 155
15.6. Summary 157
16. Resource management with Wicket 158
16.1. Static vs dynamic resources 158
16.2. Resource references 158
16.3. Package resources 158
16.4. Adding resources to page header section 163
16.5. Context-relative resources 165
16.6. Resource dependencies 166
16.7. Aggregate multiple resources with resource bundles 166
16.8. Put JavaScript inside page body 167
16.9. Header contributors positioning 169
16.10. Custom resources 169
16.11. Mounting resources 471
16.12. Lambda support 171
16.13. Shared resources 172
16.14. Customizing resource loading 173
16.15. CssHeaderltem and JavaScriptHeaderltem compression 175

16.16. NIO resources 176

16.17. Resources derived through models
16.18. Summary

17. An example of integration with JavaScript
17.1. What we want to doE
17.2. Eand how we will do it
17.3. Summary

18. Wicket advanced topics

18.1. Enriching components with behaviors

18.2. Generating callback URLs with IRequestListener

18.3. Wicket events infrastructure
18.4. Initializers
18.5. Using JMX with Wicket
18.6. Generating HTML markup from code
18.7. Summary
19. Working with AJAX

19.1. How to use AJAX components and behaviors

19.2. Build-in AJAX components
19.3. Built-in AJAX behaviors
19.4. Using an activity indicator
19.5. AJAX request attributes and call listeners
19.6. Creating custom AJAX call listener
19.7. Stateless AJAX components/behaviors
19.8. Lambda support for components
19.9. Lambda support for behaviors
19.10. Summary

20. Integration with enterprise containers
20.1. Integrating Wicket with EJB
20.2. Integrating Wicket with Spring
20.3. JSR-330 annotations
20.4. Summary

21. Native WebSockets
21.1. How does it work ?
21.2. How to use
21.3. Client-side APIs
21.4. Testing
21.5. FAQ

22. Security with Wicket
22.1. Authentication
22.2. Authorizations
22.3. Using HTTPS protocol
22.4. URLs encryption in detall

178
179
180
180
181
185
186
186
187
190
191
192
195
197
198
198
200
210
213
214
216
221
222
223
223
224
224
225
227
227
228
228
228
231
232
232
233
233
237
244
245

22.5.
22.6.
22.7.
22.8.
22.9.
22.10
23. Test
23.1.
23.2.
23.3.
23.4.
24, Test
24.1.
24.2.
24.3.

CSREF protection

Content Security Policy (CSP)

Cross Origin Isolation with COOP and COEP
Package Resource Guard

External Security Checks

. Summary

Driven Development with Wicket

Utility class WicketTester

Testing Wicket forms

Testing markup with TagTester

Summary

Driven Development with Wicket and Spring
Configuration of the runtime environment
Configuration of the JUnit based integration test environment

Summary

25. Wicket Best Practices

25.1.
25.2.
25.3.
25.4.
25.5.
25.6.
25.7.
25.8.
25.9.

25.10.
25.11.
25.12.
25.13.
25.14.
25.15.
25.16.
25.17.

Encapsulate components correctly

Put models and page data in fields

Correct naming for Wicket IDs

Avoid changes at the component tree

Implement visibilities of components correctly

Always use models

Do not unwrap models within the constructor hierarchy
Pass models extended components

Validators must not change any data or models

Do not pass components to constructors
Use the Wicket session only for global data
Do not use factories for components

Every page and component must be tested
Avoid interactions with other servlet filters
Cut small classes and methods

The argument "Bad documentation”
Summary

26. Wicket Internals

26.1.
26.2.

Page storing

Markup parsing and Autocomponents

27. Wicket HTTP/2 Support (Experimental)

27.1.
27.2.

Example Usage

Create server specific http/2 push support

28. Wicket Metrics Monitoring (Experimental)

28.1.

Example setup

246
248
251
252
253
254
256
256
263
266
267
268
268
270
275
276
276
278
279
279
280
281
282
282
283
283
284
285
287
287
287
288
289
290
290
292
295
295
296
299
299

28.2. Visualization with Graphite 301

28.3. Measured data 303
28.4. Write own measurements 304
Appendix A: Working with Maven 306
A.1l. Switching Wicket to DEPLOYMENT mode 306
A.2. Creating a Wicket project from scratch and importing it into our favourite IDE 307
Appendix B: Project WicketStuff 314
B.1. What is project WicketStuff 314
B.2. Module tinymce 315
B.3. Module wicketstuff-gmap3 316
B.4. Module wicketstuff-googlecharts 317
B.5. Module wicketstuff-inmethod-grid 318
B.6. Module wicketstuff-rest-annotations 319
B.7. Module wicketstuff-lambda-components 321
Appendix C: Lost In Redirection With Apache Wicket 322
Appendix D: Working with Karaf 327
D.1. Wicket feature 327.

Appendix E: Contributing to this guide 329

Chapter 1. Introduction

Wicket has been around since 2004 and it has been an Apache project since 2007. During these
years it has proved to be a solid and valuable solution for building enterprise web applications.

Wicket core developers have done a wonderful job with this framework and they continue to
improve it release after release. However Wicket never provided a freely available documentation

and even if you can find many live examples and many technical articles on the Internet (most of
them at Wicket Examples Site and at Wicket in Action), the lack of an organized and freely available
documentation has always been a sore point for this framework.

ThatOs quite an issue because many other popular frameworks (like Spring, Hibernate or Struts)
offer a vast and very good documentation which substantially contributed to their success.

This document is not intended to be a complete reference for Wicket but it simply aims to be a
straightforward introduction to the framework that should significantly reduce its learning curve.

What you will find here reflects my experience with Wicket and itOs strictly focused on the
framework. The various Wicket-related topics are gradually introduced using pragmatic examples

of code that you can find in the according repository on Github. However remember that Wicket is
a vast and powerful tool, so you should feel confident with the topics exposed in this document
before starting to code your real applications!

For those who need further documentation on Wicket, there are many good books available for this
framework.

Hope youOll find this guide helpful. Have fun with Wicket!

Editors:

Andrea Del Bene, adelbene@apache.org
Martin Grigorov
Tobias Soloschenko
Igor Vaynberg
Carsten Hufe
Christian Kroemer
Daniel Bartl

Paul Bor!

Joachim Rohde
Emond Papegaaij

PS: this guide is based on Wicket 9. However if you are using an older version you should find this
guide useful as well, but itOs likely that the code and the snippets wonOt work with your version.

PPS: although we try to do our best working on this guide, this document is a work in progress and
may contain errors and/or omissions. ThatOs why any feedback of any kind is REALLY appreciated!

Project started by

comsysio

sense and re

http://examples10x.wicket.apache.org
http://wicketinaction.com
https://github.com/bitstorm/Wicket-tutorial-examples
http://wicket.apache.org/learn/books/
mailto:adelbene@apache.org
http://comsysto.com/

Chapter 2. How to use the example code

Most of the code you will find in this document is available as a Git repository and is licensed under
the ASF 2.0. Examples are hosted live at https://wicket-guide.herokuapp.com/ . To get a local copy of
the repository you can run the clone command from shell:

git clone https://github.com/bitstorm/Wicket-tutorial-examples.qit

If you arenOt used to Git, you can simply download the whole source as a zip archive:

bitstorm / Wicket-tutorial-examples I Pull Request

Code Network Pull Requests 0 Issues 0

This repo contains code examples for my personal Wicket tutorial

F SSH Git Read-Only https://github.com/bitstorm/Wicket-tutori

P branch: master - Files = Commits Branches 1

The repository contains a multi-module Maven project. Every subproject is contained in the relative
folder of the repository:

TeslAjaxEvenlsExample 9 days ago Added license header [bitsborm)
B UploadSingleFile 22 days ago Clean up [bitstosmn]
B UsernameCustomyalidator 22 days ago Clean up [bitstorm]
E .gitignore 4 months ago Added PageDataViewExample [andrea]
B vLicensE 5 months ago Added Apache License 2.0 header [andrea]
B header.txt 5 months ago Component JQueryDateField was made self-contained [andrea)]
B pom.xmi 9 days ago -Fixed project StalelessPage [bitstorm]

When the example code is used in the document, you will find the name of the subproject it belongs
to. If you donOt have any experience with Maven, you can read Appendix A where you can learn the
basic commands needed to work with the example projects and to import them into your favourite
IDE (NetBeans, IDEA or Eclipse).

https://github.com/bitstorm/Wicket-tutorial-examples
https://wicket-guide.herokuapp.com/

Chapter 3. Why should | learn Wicket?

Software development is a challenging activity and developers must keep their skills up-to-date
with new technologies.

But before starting to learn the last OcoolestO framework we should always ask ourself if it is the
right tool for us and how it can improve our everyday job. JavaOs ecosystem is already full of many
well-known web frameworks, so why should we spend our time learning Wicket?

This chapter will show you how Wicket is different from other web frameworks you may know and
it will explain also how it can improve your life as web developer.

3.1. We all like spaghetti :-) E

Ebut we all hate spaghetti code! ThatOs why in the first half of the 2000s we have seen the birth of
so many web frameworks. Their mission was to separate our business code from presentation layer

(like JSP pages).

Some of them (like Struts, Spring MVC, Velocity, etcE) have become widely adopted and they made
the MVC pattern very popular among developers. However, none of these frameworks offers a real
object-oriented (OO) abstraction for web pages and we still have to take care of web-related tasks
such as HTTP request/response handling, URL mapping, storing data into user sessions and so on.

The biggest limit of MVC frameworks is that they donOt do much to overcome the impedance
mismatch between the stateless nature of HTTP protocol and the need for our web applications to

handle (a very complex) state.

To overcome these limits developers have started to adopt a new generation of component oriented
web frameworks designed to provide a completely different approach to web development.

3.2. Component oriented frameworks - an overview

Component oriented frameworks differ from classic web frameworks in that they build a model of
requested pages on the server side and the HTML sent back to the client is generated according to
this model. You can think of the model as if it was an OinverseO JavaScript DOM, meaning that:

1. it is built on the server-side

2. itis built before HTML is sent to the client

3. HTML code is generated using this model and not vice versa.

Client requests
a page

R

Page model is
created by
framework

e

Html is generated
according to page ——»
model.

Html is returned
to client

General schema of page request handling for a component oriented framework

With this kind of framework our web pages and their HTML components (forms, input controls,
links, etcE), are pure class instances. Since pages are class instances they live inside the JVM heap
and we can handle them as we do with any other Java class. This approach is very similar to what
GUI frameworks (like Swing or SWT) do with desktop windows and their components. Wicket and
the other component oriented frameworks bring to web development the same kind of abstraction
that GUI frameworks offer when we build a desktop application. Most of those kind of frameworks
hide the details of the HTTP protocol and naturally solve the problem of its stateless nature.

3.3. Benefits of component oriented frameworks for
web development

At this point some people may still wonder why OOP is so important for web development and
what benefits it can bring to developers. LetOs quickly review the main advantages that this
paradigm can offer us:

¥ Web pages are objects : web pages are not just text files sent back to the client. They are object
instances and we can harness OOP to design web pages and their components. With Wicket we
can also apply inheritance to HTML markup in order to build a consistent graphic layout for our
applications (we will see markup inheritance in chapter 4.2).

¥ We donOt have to worry about an applicationOs state . pages and components can be
considered stateful entities. They are Java objects and they can keep a state inside them and
reference other objects. We can stop worrying about keeping track of user data stored inside the
HttpSession and we can start managing them in a natural and transparent way.

¥ Testing web applications is much easier . since pages and components are pure objects, you
can use JUnit to test their behavior and to ensure that they render as expected. Wicket has a set
of utility classes for unit testing that simulate user interaction with web pages, hence we can
write acceptance tests using just JUnit without any other test framework (unit testing is covered
in chapter 23).

3.4. Wicket vs the other component oriented
frameworks

Wicket is not the only component oriented framework available in the Java ecosystem. Among its
competitors we can find GWT (from Google), JSF (from Oracle), Vaadin (from Vaadin Ltd.), etcE
Even if Wicket and all those other frameworks have their pros and cons, there are good reasons to
prefer Wicket over them:

¥ Wicket is 100% open source : Wicket is a top Apache project and it doesnOt depend on any
private company. You donOt have to worry about future licensing changes, Wicket will always be
released under Apache license 2.0 and freely available.

¥ Wicket is a community driven project : The Wicket team supports and promotes the dialogue
with the frameworkOs users through two mailing lists (one for users and another one for
framework developers) and an Apache JIRA (the issue tracking system). Moreover, as any other
Apache project, Wicket is developed paying great attention to user feedback and to suggested
features.

http://wicket.apache.org/help/email.html
http://wicket.apache.org/help/email.html
https://issues.apache.org/jira/browse/WICKET

¥ Wicket is just about Java and good old HTML : almost all web frameworks force users to adopt
special tags or to use server side code inside HTML markup. This is clearly in contrast with the
concept of separation between presentation and business logic and it leads to a more confusing
code in our pages. In Wicket we donOt have to take care of generating HTML inside the page
itself, and we wonOt need to use any tag other than standard HTML tags. All we have to do is to
attach our components (Java instances) to the HTML tags using a simple tag attribute called
wicket:id (we will shortly see how to use it).

¥ With Wicket we can easily use JavaBeans and POJO in our web tier : one of the most
annoying and error-prone tasks in web development is collecting user input through a form and
keeping form fields updated with previously inserted values. This usually requires a huge
amount of code to extract input from request parameters (which are strings), parse them to Java
types and store them into some kind of variable. And this is just half of the work we have to do
as we must implement the inverse path (load data from Java to the web form). Moreover, most
times our forms will use a JavaBean or a POJO as a backing object, meaning that we must
manually map form fields with the corresponding object fields and vice versa. Wicket comes
with an intuitive and flexible mechanism that does this mapping for us without any
configuration overhead (using a convention over configuration approach) and in a transparent
way. Chapter 10 will introduce a Wicket model concept and we will learn how to harness this
entity with forms.

¥ No complex XML needed : Wicket was designed to minimize the amount of configuration files
needed to run our applications. No XML file is required except for the standard deployment
descriptor web.xml (unless you are using Servlet 3 or a later version. See Chapter 4 for more
details).

http://en.wikipedia.org/wiki/Plain_Old_Java_Object

Chapter 4. Wicket says OHello world!O

Wicket allows us to design our web pages in terms of components and containers, just like AWT

does with desktop windows. Both frameworks share the same component-based architecture: in

AWT we have a Windows instance which represents the physical windows containing GUI
components (like text fields, radio buttons, drawing areas, etcE), in Wicket we have a WebPage
instance which represents the physical web page containing HTML components (pictures, buttons,

forms, etcE) .

+ org.apache wicket. Component

[ava.awt.Component + java.awt. Component org.apache.wicket.Component
2 &
£ F
Javaanwt. Window org.apache.wicket.WebPage
+ add(in ¢: java.awl.Component) - + add(in £: org.apache wicket Component) -
In both frameworks we find a base class for GUI components called Component. Wicket pages can

be composed (and usually are) by many components, just like AWT windows are composed by
Swing/AWT components. Both frameworks promote the reuse of presentation code and GUI
elements building custom components. Even if Wicket already comes with a rich set of ready-to-use

components, building custom components is a common practice when working with this

framework. WeOll learn more about custom components in the next chapters.

4.1. Wicket distribution and modules

Wicket is available as a binary package on the main site http://wicket.apache.org . Inside this
archive we can find the distribution jars of the framework. Each jar corresponds to a sub-module of

the framework. The following table reports these modules along with a short description of their
purpose and with the related dependencies:

ModuleOs name Description Dependencies

wicket-core Contains the main classes of the wicket-request, wicket-util
framework, like class
Component and Application .

wicket-tester Contains common classes for wicket-core
unit testing (like WicketTester).

wicket-core-tests Contains test cases for wicket- wicket-core, wicket-tester
core.
wicket-request This module contains the wicket-util

classes involved into web
request processing.

http://wicket.apache.org

wicket-util

wicket-bean-validation

wicket-devutils

wicket-extensions

wicket-auth-roles

wicket-ioc

wicket-guice

wicket-spring

wicket-velocity

wicket-jmx

wicket-objectsizeof-agent

Contains general-purpose utility
classes for functional areas
such as /0O, lang, string
manipulation, security, etcE

Provides support for JSR 303
standard validation.

Contains utility classes and
components to help developers
with tasks such as debugging,
class inspection and so on.

Contains a vast set of built-in
components to build a rich Ul
for our web application (Ajax
support is part of this module).

Provides support for role-based
authorization.

This module provides common
classes to support Inversion Of

Control. 1tOs used by both Spring

and Guice integration module.

This module provides
integration with the
dependency injection
framework developed by
Google.

This module provides
integration with Spring
framework.

This module provides panels
and utility class to integrate
Wicket with Velocity template
engine.

This module provides panels
and utility class to integrate
Wicket with Java Management
Extensions.

Provides integration with Java
agent libraries and
instrumentation tools.

None

wicket-core, wicket-tester

wicket-core, wicket-extensions,

wicket-tester

wicket-core, wicket-tester

wicket-core, wicket-tester

wicket-core, wicket-tester

wicket-core, wicket-ioc, wicket-
tester

wicket-core, wicket-ioc, wicket-
tester

wicket-core, wicket-tester

wicket-core, wicket-tester

wicket-core

Please note that the core module depends on the utility and request modules, hence it cannot be

used without them.

4.2. Configuration of Wicket applications

In this chapter we will see a classic Hello World! example implemented using a Wicket page with a
built-in component called Label (the code is from the HelloWorldExample project). Since this is the
first example of the guide, before looking at Java code we will go through the common artifacts
needed to build a Wicket application from scratch.

All the example projects presented in this document have been generated using
Maven and the utility page at http://wicket.apache.org/start/quickstart.html
Appendix A contains the instructions needed to use these projects and build a
quickstart application using Apache Maven. All the artifacts used in the next
example (files web.xml, HomePage.class and HomePage.html) are automatically
generated by Maven.

4.2.1. Wicket application structure

A Wicket application is a standard Java EE web application, hence it is deployed through a web.xml
file placed inside folder WEB-INF:

» (= build

L=
¥ = WebConktenk
* = META-INF

&= WEB-INF

» = lib
(¥ web.xml

lllustration: The standard directory structure of a Wicket application

The content of web.xml declares a servlet filter (class org.apache.wicket.Protocol.http.WicketFilter)
which dispatches web requests to our Wicket application:

<?xml version="1.0" encoding="UTF-8"?>
<web-app>
<display-name>Wicket Test</display-name>
<filter>
<filter-name>TestApplication</filter-name>
<filter-class>org.apache.wicket.protocol.http.WicketFilter</filter-class>
<init-param>
<param-name>applicationClassName</param-name>
<param-value>org.wicketTutorial. WicketApplication</param-value>
</init-param>
<[filter>
<filter-mapping>
<filter-name>TestApplication</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

T > mp T e e mp Ty me mp Ty mp mp

http://wicket.apache.org/start/quickstart.html

</web-app>

Since this is a standard servlet filter we must map it to a specific set of URLs through the <filter-
mapping> tag). In the xml above we have mapped every URL to our Wicket filter.

If we are using Servlet 3 or a later version, we can of course use a class in place of web.xml to
configure our application. The following example uses annotation WebFilter .

@WebFilter(value = "/*", initParams = {

E @WeblnitParam(name = "applicationClassName", value =
"com.mycompany.WicketApplication"),
E @WeblnitParam(name="filterMappingUrlPattern", value="/*") })

public class ProjectFilter extends WicketFilter {

Wicket can be started in two modes named respectively DEVELOPMENT and
DEPLOYMENT. The first mode activates some extra features which help
application development, like resources monitoring and reloading, full stack trace
rendering of exceptions, an AJAX debugger window, etcE The DEPLOYMENT mode
turns off all these features optimizing performances and resource consumption. In

our example projects we will use the default mode which is DEVELOPMENT.
Chapter 24.1 contains the chapter OSwitching Wicket to DEPLOYMENT modeO
where we can find further details about these two modes as well as the possible
ways we have to set the desired one. In any case, DO NOT deploy your applications
in a production environment without switching to DEPLOYMENT mode!

4.2.2. The application class

If we look back at web.xml we can see that we have provided the Wicket filter with a parameter
called applicationClassName . This value must be the fully qualified class name of a subclass of
org.apache.wicket.Application . This subclass represents our web application built upon Wicket and
itOs responsible for configuring it when the server is starting up. Most of the times our custom
application class wonOt inherit directly from class Application , but rather from class
org.apache.wicket.protocol.http.WebApplication which provides a closer integration with servlet
infrastructure. Class Application comes with a set of configuration methods that we can override to
customize our applicationOs settings. One of these methods is getHomePage() that must be
overridden as it is declared abstract:

public abstract Class<? extends Page> getHomePage()

As you may guess from its name, this method specifies which page to use as a homepage for our
application. Another important method is init() :

protected void init()

This method is called when our application is loaded by the web server (Tomcat, Jetty, etcE) and is

the ideal place to put our configuration code. The Application class exposes its settings grouping
them into interfaces (you can find them in package org.apache.wicket.settings). We can access these
interfaces through getter methods, which will be gradually introduced in the next chapters when
covering related settings.

The current applicationOs instance can be retrieved at any time by calling static method
Application.get() in our code. We will give more details about this method in chapter 9.3. The
content of the application class from the HelloWorldExample project is the following:

public class WicketApplication extends WebApplication

@Override
public Class<? extends WebPage> getHomePage()

{

return HomePage.class;

}

m [T [T [y mp—

@Override
public void init()
{
super.init();
/[add your configuration here

}

~ T > mp mp mp mp

Since this is a very basic example of a Wicket application, we donOt need to specify anything inside
the init method. The home page of the application is the =~ HomePage class. In the next paragraph we
will see how this page is implemented and what conventions we have to follow to create a page in
Wicket.

Declaring a WicketFilter inside web.xml descriptor is not the only way we have to
kick-start our application. If we prefer to use a servlet instead of a filter, we can

use class org.apache.wicket.protocol.http.WicketServlet . See the JavaDoc for further
details.

4.3. The HomePage class

To complete our first Wicket application we must explore the home page class that is returned by

the Application 's method getHomePage() seen above. In Wicket a web page is a subclass of
org.apache.wicket.WebPage . This subclass must have a corresponding HTML file which will be used

by the framework as template to generate its HTML markup. This file is a regular plain HTML file

(its extension must be html).

By default this HTML file must have the same name of the related page class and must be in the
same package:

10

CE WA R R T R I

#& HomePage.html

M HomePage.java

| L R—

lllustration: Page class and its related HTML file

If you donOt like to put class and html side by side (letOs say you want all your HTML files in a
separated folder) you can use Wicket settings to specify where HTML files can be found. We will
cover this topic later in chapter 16.14 .

The Java code for the HomePage class is the following:

package org.wicketTutorial;

import org.apache.wicket.request.mapper.parameter.PageParameters;
import org.apache.wicket.markup.html.basic.Label;
import org.apache.wicket.markup.html.WebPage;

public class HomePage extends WebPage {
public HomePage() {
add(new Label("helloMessage"”, "Hello WicketWorld!"));

}

=~ [T M [m

Apart from subclassing WebPage, HomePage defines a constructor that adds a Label component to

itself. Method add(Component ~ component) is inherited from ancestor class
org.apache.wicket.MarkupContainer ~ and is used to add children components to a web page. WeOll
see more about MarkupContainer later in chapter 5.2. Class

org.apache.wicket.markup.html.basic.Label is the simplest component shipped with Wicket. It just
inserts a string (the second argument of its constructor) inside the corresponding HTML tag. Just

like any other Wicket component, Label needs a textual id ('helloMessage' in our example) to be
instantiated. At runtime Wicket will use this value to find the HTML tag we want to bind to the
component. This tag must have a special attribute called wicket:id and its value must be identical to
the component id (comparison is case-sensitive!).

Here is the HTML markup for HomePage (file HomePage.html):

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>Apache Wicket HelloWorld</title>
</head>
<body>

™ > [Tp My me

<div wicket:id="helloMessage">
[Label's message goes here]
</div>

</body>

m > m» [mp

11

</html>

We can see that the wicket:id attribute is set according to the value of the component id. If we run
this example we will see the text Hello WicketWorld! Inside a <div> tag.

Label replaces the original content of its tag (in our example [LabelOs message goes
here]) with the string passed as value (Hello WicketWorld! in our example)

If we specify a wicketiid attribute for a tag without adding the corresponding
component in our Java code, Wicket will throw a ComponentNotFound Exception.
On the contrary if we add a component in our Java code without specifying a
corresponding wicket:id attribute in our markup, Wicket will throw a
WicketRuntimeException .

4.4. \Wicket Links

The basic form of interaction offered by web applications is to navigate through pages using links.

In HTML a link is basically a pointer to another resource that most of the time is another page.
Wicket implements links with component org.apache.wicket.markup.html.link.Link , but due to the
component-oriented nature of the framework, this component is quite different from classic HTML

links. Following the analogy with GUI frameworks, we can consider Wicket link as a OclickO event
handler: its purpose is to perform some actions (on server side!) when the user clicks on it.

That said, you shouldnOt be surprised to find an abstract method called onClick() inside the Link

class. In the following example we have a page with a Link containing an empty implementation of
onClick :

public class HomePage extends WebPage {
public HomePage(){
add(new Link<Void>("id"){
@Override
public void onClick() {
/llink code goes here

}
h;
}

=~ [T> [T M mp mp mp mp mp

By default after onClick has been executed, Wicket will send back to the current page to the client
web browser. If we want to navigate to another page we must use method setResponsePageof class
Component:

public class HomePage extends WebPage {
public HomePage(){
add(new Link<Void>("id"){
@Override

T [T [T

12

E public void onClick() {

E /lwe redirect browser to another page.
E setResponsePage(AnotherPage.class);
E }

E D

E }

}

In the example above we used a version of setResponsePagewhich takes as input the class of the
target page. In this way a new instance of AnotherPage will be created each time we click on the
link. The other version of setResponsePagetakes in input a page instance instead of a page class:

@Override

public void onClick() {

E /lwe redirect browser to another page.
AnotherPage anotherPage = new AnotherPage();
setResponsePage(anotherPage);

= M > M

The difference between using the first version of setResponsePagerather than the second one will
be illustrated in chapter 8 , when we will introduce the topic of stateful and stateless pages. For now,
we can consider them as equivalent.

Since Wicket 8 is built on Java 8, we can choose to leverage lambda expressions to specify handler
method:

/lcreate a standard link component
add(ComponentFactory.link("id", (newlink) -> {/*do stuff*/});

Factory class ComponentFactory is provided by the WicketStuff project. You can find more
information on this project, as well as the instructions to use its modules, in Appendix B.

Wicket comes with a rich set of link components suited for every need (links to static URL, Ajax-
enhanced links, links to a file to download, links to external pages and so on). We will see them in
chapter 10 .

We can specify the content of a link (i.e. the text inside it) with its method setBody.
| This method takes in input a generic Wicket model, which will be the topic of
chapter 11 .

4.5. Summary

In this chapter we have seen the basic elements that compose a Wicket application. We have started
preparing the configuration artifacts needed for our applications. As promised in chapter 2.4 , we
needed to put in place just a minimal amount of XML with an application class and a home page.
Then we have continued our Ofirst contactO with Wicket learning how to build a simple page with a

13

label component as child. This example page has shown us how Wicket maps components to HTML
tags and how it uses both of them to generate the final HTML markup. In the last paragraph we had

a first taste of Wicket links and we have seen how they can be considered as a OclickO event listener
and how they can be used to navigate from a page to another.

14

Chapter 5. Wicket as page layout manager

Before going ahead with more advanced topics, we will see how to maintain a consistent layout
across our site using Wicket and its component-oriented features. Probably this is not the most
interesting use we can get out of Wicket, but it is surely the simplest one so itOs the best way to get
our hands dirty with some code.

5.1. Header, footer, left menu, content, etcE

There was a time in the 90s when Internet was just a buzzword and watching a plain HTML page
being rendered by a browser was a new and amazing experience. In those days we used to organize
our page layout using the <frame> HTML tag. Over the years this tag has almost disappeared from
our code and it survives only in few specific domains. For example is still being used by JavaDoc.

With the adoption of server side technologies like JSP, ASP or PHP the tag <frame> has been
replaced by a template-based approach where we divide our page layout into some common areas

that will be present in each page of our web application. Then, we manually insert these areas in

every page including the appropriate markup fragments.

In this chapter we will see how to use Wicket to build a site layout. The sample layout we will use is
a typical page layout consisting of the following areas:

¥ a header which could contain site title, some logos, a navigation bar, etcE
¥ aleft menu with a bunch of links to different areas/functionalities of the site.
¥ a footer with generic informations like web masterOs email, the company address, etcE

¥ a content area which usually contains the functional part of the page.

The following picture summarises the layout structure:

15

: Header
Menu Content

| Footer

Once we have chosen a page layout, our web designer can start building up the site theme. The
result is a beautiful mock of our future web pages. Over this mock we can map the original layout
areas:

Jug 'enda Gestione Anagrafica :
5 Header ;
E _ # Archivio Ospiti
E & ii Num. Ospite Nome Cognome Data di nascita Cittadinanza Sesso i
g ; L :: D! andrea del bene 19/05/1980 qui M ;
ke 3 Msinl Dot i 2 pino rossl 23/11/1990 I M :
2> AQ Cerca Qspite HF'S tizio calop 21/03/1992 q M ;
HES ﬁ} MNuovo Ospite v))) i
H "FI " 3 items found, displaying all ikems. -
i # ~™ Ricerca Accoglienza | 0 g
E > “ Repaort EE Export optons: CSV CSV Excel Excel PDF POF E
: Menu : Content §
E _:-.I \) = l..-. lr{-; I) E
jrovered by c:f;‘h ' @ : Sprmg : O Flrefox. 5
5 = Footer :

Now in order to have a consistent layout across all the site, we must ensure that each page will
include the layout areas seen above. With an old template-based approach we must manually put

16

them inside every page. If we were using JSP we would probably end up using include directive to
add layout areas in our pages. We would have one include for each of the areas (except for the

content):

Jug a Gestione Anagrafica :
: ude Jcommon/jug4TendaHeader.jsp"%> :

:: Archivio Ospiti

iy % |Num. Ospite Nome Cognome Data di nascita Cittadinanza Sesso
i|* 4 Home r % andrea del bene 19/05/1980 qui M
pino rossi 23/11/1990 li M

L)
s P Lista Ospiti " 2
o

> A . 15t
Cerca Ospite b .} 3 tizio calop 21/03/1992 q M
> H.b Nuowo Dspite -E

' 3 jems found, displaying all items.
"
001

» r" Ricerca Accoglienza

x L7 Rapart :E Expart aptions: CSV CSW Excel Excel POF POF
| <%@include file= i <div id=" "
IIgEktlﬂ“EﬂSpltEMEhu h‘tm dlv Id cuntent
: "%

;Pcmered by -;-:)3_..__ . S I'll'l c FII'EFGH

rediscover the web

<%@ihclude file=' --f'Cﬂmmﬂﬂ!]Ungendaanter jsp"%:

lasassssm=

For the sake of simplicity we can consider each included area as a static HTML
. fragment.

Now letOs see how we can handle the layout of our web application using Wicket.

5.2. Here comes the inheritance!

The need of ensuring a consistent layout across our pages unveiled a serious limit of the HTML: the
inability to apply inheritance to web pages and their markup. WouldnOt be great if we could write
our layout once in a page and then inherit it in the other pages of our application? One of the goals
of Wicket is to overcome this kind of limit.

5.2.1. Markup inheritance

As we have seen in the previous chapter, Wicket pages are pure Java classes, so we can easily write
a page which is a subclass of another parent page. But in Wicket inheritance is not limited to the

classic object-oriented code inheritance. When a class subclasses a WebPage it also inherits the

HTML file of the parent class. This type of inheritance is called markup inheritance. To better
illustrate this concept letOs consider the following example where we have a page class called
GenericSitePage with the corresponding HTML file GenericSitePage.html. Now letOs create a specific
page called OrderCheckOutPage where users can check out their orders on our web site. This class
extends GenericSitePage but we donOt provide it with any corresponding HTML file. In this scenario
OrderCheckOutPage will use GenericSitePage.html as markup file:

17

® webPage

® GeneralsitePage

GeneralSitePage.html J(/

[

& ordercheckoutPage

Markup inheritance comes in handy for page layout management as it helps us avoid the burden of
checking that each page conforms to the site layout. However to fully take advantage of markup
inheritance we must first learn how to use another important component of the framework that

supports this feature: the panel.

n If no markup is found (nor directly assigned to the class, neither inherited from an
ancestor) a MarkupNotFoundException is thrown.

5.2.2. Panel class

Class org.apache.wicket.markup.html.panel.Panel is a special component which lets us reuse GUI
code and HTML markup across different pages and different web applications. It shares a common
ancestor class with WebPage class, which is org.apache.wicket.MarkupContainer

18

&MarkupContainer

org.apache wicket

& MarkupContainer(String)

& MarkupContainer(String, IModel<?>)

@ add{Component[]):MarkupContainer

@ addOrReplace(Component[]):MarkupContainer

& autoAdd(Component, MarkupStream):boolean

@ contains(Component, boolean):boclean

@ getAssociatedMarkupStream({boolean): MarkupStream
@ getAssociatedMarkup():Markup

@ getMarkup(Component): IMarkupFragment

@ getMarkuplype(): MarkupType

@ intemalAdd{Component)-void

@ iterator():kerator<Component=

& iterator(Comparator<Component>): terator<Component>
@ remove(Component): MarkupContainer

@ remove(String): MarkupContainer

@ removeAll(): MarkupContainer

& renderAssociatedMlarkup{String, String):void

@ replace(Component): MarkupContainer

@ gsetDefaultiModel{iModel<7?>): MarkupContainer

@ size():int

@ toString(): String

@ toStnng(boolean): Stnng

e isitChildren(Class<?> Visitor<S,R>):R

& isitChildren(lVisitor<Component, R>):R
intemallnitialize():void

@ onComponentTagBody{MarkupStream, ComponentTag):void
@ queue{Component[]):MarkupContainer

@ dequeue():void

@ dequeve(DequeuveContext): void

@ newDegueueContext():DequeueContext

@ getRegionMarkup():IMarkupFragment

@ indComponentToDequeue(ComponentTag): Component
@ stream():Stream<Component>

@ streamChildren(): Stream<Component>

@ get{Stnng):IRequestableComponent

@ get(Stnng):.IRequestableComponent

& Panel (BWebPage
org.apache wicket markup html panel org.apache.wicket markup.html
@ Panel{String) @ getMarkupType():MarkupType
& Panel(String IModel<?>) o dirty(boolean): void

@ getRegionMarkup():IMarkupFragment

lllustration: Hierarchy of WebPage and Panel classes

Subclasses of MarkupContainer can contain children components that can be added with method
add(ComponentE) (seen in chapter 3.3). MarkupContainer implements a full set of methods to
manage children components. The basic operations we can do on them are:

¥ add one or more children components (with method add).

¥ remove a specific child component (with method remove).

19

¥ retrieve a specific child component with method get(String) . The string parameter is the id of
the component or its relative path if the component is nested inside other MarkupContainers .
This path is a colon-separated string containing also the ids of the intermediate containers
traversed to get to the child component. To illustrate an example of component path, letOs
consider the code of the following page:

MyPanel myPanel = new MyPanel ("innerContainer");
add(myPanel);

Component MyPanel is a custom panel containing only a label having "name" as id. Under those
conditions we could retrieve this label from the container page using the following path expression:

Label name = (Label)get("innerContainer:name");

¥ replace a specific child component with a new component having the same id (with method
replace).

¥ iterate thought children components. This can be done in the old way (pre-Wicket 8) using
method iterator or using visitor pattern with method visitChildren . Starting from Wicket 8 the
same task can be accomplished using the stream object returned by methods stream (which
contains only the direct children) and streamChildren (which contains all children).

Both Panel and WebPage have their own associated markup file which is used to render the
corresponding component. If such file is not provided, Wicket will apply markup inheritance
looking for a markup file through their ancestor classes. When a panel is attached to a container,
the content of its markup file is inserted into its related tag.

While panels and pages have much in common, there are some notable differences between these

two components that we should keep in mind. The main difference between them is that pages can

be rendered as standalone entities while panels must be placed inside a page to be rendered.
Another important difference is the content of their markup file: for both WebPage and Panel this is
a standard HTML file, but Panel uses a special tag to indicate which part of the whole file will be
considered as markup source. This tag is <wicket:panel> . A markup file for a panel will typically
look like this:

<htmI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>

<body>

E <wicket:panel>

E <!-- Your markup goes here -->
E </wicket:panel>

</body>

</html>

20

The HTML outside tag <wicket:panel> will be removed during rendering phase. The space outside
this tag can be used by both web developers and web designers to place some mock HTML to show
how the final panel should look like.

5.3. Divide et impera!

LetOs go back to our layout example. In chapter 5.1 we have divided our layout in common areas
that must be part of every page. Now we will build a reusable template page for our web
application combining pages and panels. The code examples are from project
MarkuplnheritanceExample.

5.3.1. Panels and layout areas

First, letOs build a custom panel for each layout area (except for ‘content' area). For example given
the header area

we can build a panel called HeaderPanel with a related markup file called HeaderPanel.html
containing the HTML for this area:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>
<body>
E <wicket:panel>
<table width="100%" style="border: Opx none;">
<tbody>
<tr>
<td>

</td>
<td>
<h1>Gestione Anagrafica</h1>
</td>
</tr>
</tbody>
</table>
E </wicket:panel>
</body>
<htmlI>

b [TP TP [T> [T T [T> TP T 1> TP [T [T

The class for this panel simply extends base class Panel:

21

package helloWorld.layoutTenda;

import org.apache.wicket.markup.html.panel.Panel,
public class HeaderPanel extends Panel {

public HeaderPanel(String id) {

super(id);
}

> [TVb [TD [TD>

For each layout area we will build a panel like the one above that holds the appropriate HTML
markup. In the end we will have the following set of panels:

¥ HeaderPanel
¥ FooterPanel

¥ MenuPanel

Content area will change from page to page, so we donOt need a reusable panel for it.

5.3.2. Template page

Now we can build a generic template page using our brand new panels. Its markup is quite
straightforward :

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<l--Include CSS-->

</head>

<body>

<div id="header" wicket:id="headerPanel">header</div>

<div id="body">

E <divid="menu" wicket:id="menuPanel">menu</div>

E <div id="content" wicket:id="contentComponent">content</div>
</div>

<div id="footer" wicket:id="footerPanel">footer</div>

</body>

</html>

The HTML code for this page implements the generic left-menu layout of our site. You can note the
4 <div> tags used as containers for the corresponding areas. The page class contains the code to
physically assemble the page and panels:

package helloWorld.layoutTenda;

22

import org.apache.wicket.markup.html.WebPage;
import org.apache.wicket.Component;
import org.apache.wicket.markup.html.basic.Label;

public class JugTemplate extends WebPage {

E public static final String CONTENT _ID = "contentComponent";

private Component headerPanel,
private Component menuPanel;
private Component footerPanel,

m m» mp

public JugTemplate(){
add(headerPanel = new HeaderPanel("headerPanel));
add(menuPanel = new MenuPanel("menuPanel"));
add(footerPanel = new FooterPanel("footerPanel"));
add(new Label(CONTENT _ID, "Put your content here"));

[T T [T [T [T [T

}

/lgetters for layout areas
...

~ T M

Done! Our template page is ready to be used. Now all the pages of our site will be subclasses of this
parent page and they will inherit the layout and the HTML markup. They will only substitute the
Label inserted as content area with their custom content.

5.3.3. Final example

As final example we will build the login page for our site. We will call it SimpleLoginPage . First, we
need a panel containing the login form. This will be the content area of our page. We will call it
LoginPanel and the markup is the following:

<htmI>
<head>
</head>
<body>
E <wicket:panel>
<div style="margin: auto; width: 40%;">
<form id="loginForm" method="get">
<fieldset id="login" class="center">
<legend >Login</legend>
Username: <input type="text" id="username"/>

Password: <input type="password" id="password" />
<p>
<input type="submit" name="login" value="login"/>
</p>
<[fieldset>
</form>

™ > e My e e e e ey e mp

23

E </div>

E </wicket:panel>
</body>

</html>

The class for this panel just extends Panel class so we wonOt see the relative code. The form of this
panel is for illustrative purpose only. We will see how to work with Wicket forms in chapters 11 and
12. Since this is a login page we donOt want it to display the left menu area. ThatOs not a big deal as
Component class exposes a method called setVisible which sets whether the component and its
children should be displayed.

The resulting Java code for the login page is the following:

package helloWorld.layoutTenda;

import helloWorld.LoginPanel;

import org.apache.wicket.event.Broadcast;
import org.apache.wicket.event.|IEventSink;

public class SimpleLoginPage extends JugTemplate {
public SimpleLoginPage(){
super();
replace(new LoginPanel(CONTENT_ID));
getMenuPanel().setVisible(false);

}

> [Td TP TP [TD [T

Obviously this page doesnOt come with a related markup file. You can see the final page in the
following picture:

5.4. Markup inheritance with the wicket:extend tag

With Wicket we can apply markup inheritance using another approach based on the tag
<wicket:child> . This tag is used inside the parentOs markup to define where the children
pages/panels can OinjectO their custom markup extending the markup inherited from the parent

24

