Ctrl+K
Logo image Logo image

Site Navigation

  • API Reference
  • Examples

Site Navigation

  • API Reference
  • Examples

Section Navigation

  • PyFlink Table
    • TableEnvironment
    • Table
    • Data Types
    • Window
    • Expressions
    • User Defined Functions
    • Descriptors
    • StatementSet
    • Catalog
  • PyFlink DataStream
  • PyFlink Common

pyflink.table.udf.udaf#

udaf(f: Optional[Union[Callable, pyflink.table.udf.AggregateFunction, Type]] = None, input_types: Optional[Union[List[pyflink.table.types.DataType], pyflink.table.types.DataType, str, List[str]]] = None, result_type: Optional[Union[pyflink.table.types.DataType, str]] = None, accumulator_type: Optional[Union[pyflink.table.types.DataType, str]] = None, deterministic: Optional[bool] = None, name: Optional[str] = None, func_type: str = 'general') → Union[pyflink.table.udf.UserDefinedAggregateFunctionWrapper, Callable][source]#

Helper method for creating a user-defined aggregate function.

Example:
>>> # The input_types is optional.
>>> @udaf(result_type=DataTypes.FLOAT(), func_type="pandas")
... def mean_udaf(v):
...     return v.mean()

>>> # Specify result_type via string
>>> @udaf(result_type='FLOAT', func_type="pandas")
... def mean_udaf(v):
...     return v.mean()
Parameters
  • f – user-defined aggregate function.

  • input_types – optional, the input data types.

  • result_type – the result data type.

  • accumulator_type – optional, the accumulator data type.

  • deterministic – the determinism of the function’s results. True if and only if a call to this function is guaranteed to always return the same result given the same parameters. (default True)

  • name – the function name.

  • func_type – the type of the python function, available value: general, pandas, (default: general)

Returns

UserDefinedAggregateFunctionWrapper or function.

New in version 1.12.0.

previous

pyflink.table.udf.AggregateFunction

next

pyflink.table.udf.TableAggregateFunction

Show Source

Created using Sphinx 4.5.0.