EXPLAIN Statements #
EXPLAIN statements are used to explain the logical and optimized query plans of a query or an INSERT statement.
Run an EXPLAIN statement #
EXPLAIN statements can be executed with the executeSql()
method of the TableEnvironment
. The executeSql()
method returns explain result for a successful EXPLAIN operation, otherwise will throw an exception.
The following examples show how to run an EXPLAIN statement in TableEnvironment
.
EXPLAIN statements can be executed with the executeSql()
method of the TableEnvironment
. The executeSql()
method returns explain result for a successful EXPLAIN operation, otherwise will throw an exception.
The following examples show how to run an EXPLAIN statement in TableEnvironment
.
EXPLAIN statements can be executed with the execute_sql()
method of the TableEnvironment
. The execute_sql()
method returns explain result for a successful EXPLAIN operation, otherwise will throw an exception.
The following examples show how to run an EXPLAIN statement in TableEnvironment
.
EXPLAIN statements can be executed in SQL CLI.
The following examples show how to run an EXPLAIN statement in SQL CLI.
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// register a table named "Orders"
tEnv.executeSql("CREATE TABLE MyTable1 (`count` bigint, word VARCHAR(256)) WITH ('connector' = 'datagen')");
tEnv.executeSql("CREATE TABLE MyTable2 (`count` bigint, word VARCHAR(256)) WITH ('connector' = 'datagen')");
// explain SELECT statement through TableEnvironment.explainSql()
String explanation =
tEnv.explainSql(
"SELECT `count`, COUNT(word) FROM ("
+ "MyTable1 WHERE word LIKE 'F%' "
+ "UNION ALL "
+ "SELECT `count`, word FROM MyTable2) tmp"
+ "GROUP BY `count`");
System.out.println(explanation);
// explain SELECT statement through TableEnvironment.executeSql()
TableResult tableResult =
tEnv.executeSql(
"EXPLAIN PLAN FOR "
+ "SELECT `count`, COUNT(word) FROM ("
+ "MyTable1 WHERE word LIKE 'F%' "
+ "UNION ALL "
+ "SELECT `count`, word FROM MyTable2) tmp GROUP BY `count`");
tableResult.print();
TableResult tableResult2 =
tEnv.executeSql(
"EXPLAIN ESTIMATED_COST, CHANGELOG_MODE, PLAN_ADVICE, JSON_EXECUTION_PLAN "
+ "SELECT `count`, COUNT(word) FROM ("
+ "MyTable1 WHERE word LIKE 'F%' "
+ "UNION ALL "
+ "SELECT `count`, word FROM MyTable2) tmp GROUP BY `count`");
tableResult2.print();
val env = StreamExecutionEnvironment.getExecutionEnvironment()
val tEnv = StreamTableEnvironment.create(env)
// register a table named "Orders"
tEnv.executeSql("CREATE TABLE MyTable1 (`count` bigint, word VARCHAR(256)) WITH ('connector' = 'datagen')")
tEnv.executeSql("CREATE TABLE MyTable2 (`count` bigint, word VARCHAR(256)) WITH ('connector' = 'datagen')")
// explain SELECT statement through TableEnvironment.explainSql()
val explanation = tEnv.explainSql(
"""
|SELECT `count`, COUNT(word)
|FROM (
| SELECT `count`, word FROM MyTable1
| WHERE word LIKE 'F%'
| UNION ALL
| SELECT `count`, word FROM MyTable2 ) tmp
|GROUP BY `count`
|""".stripMargin)
println(explanation)
// explain SELECT statement through TableEnvironment.executeSql()
val tableResult = tEnv.executeSql(
"""
|EXPLAIN PLAN FOR
|SELECT `count`, COUNT(word)
|FROM (
| SELECT `count`, word FROM MyTable1
| WHERE word LIKE 'F%'
| UNION ALL
| SELECT `count`, word FROM MyTable2 ) tmp
|GROUP BY `count`
|""".stripMargin)
tableResult.print()
val tableResult2 = tEnv.executeSql(
"""
|EXPLAIN ESTIMATED_COST, CHANGELOG_MODE, PLAN_ADVICE, JSON_EXECUTION_PLAN
|SELECT `count`, COUNT(word)
|FROM (
| SELECT `count`, word FROM MyTable1
| WHERE word LIKE 'F%'
| UNION ALL
| SELECT `count`, word FROM MyTable2 ) tmp
|GROUP BY `count`
|""".stripMargin)
tableResult2.print()
table_env = StreamTableEnvironment.create(...)
t_env.execute_sql("CREATE TABLE MyTable1 (`count` bigint, word VARCHAR(256)) WITH ('connector' = 'datagen')")
t_env.execute_sql("CREATE TABLE MyTable2 (`count` bigint, word VARCHAR(256)) WITH ('connector' = 'datagen')")
# explain SELECT statement through TableEnvironment.explain_sql()
explanation1 = t_env.explain_sql(
"SELECT `count`, COUNT(word) FROM ("
"MyTable1 WHERE word LIKE 'F%' "
"UNION ALL "
"SELECT `count`, word FROM MyTable2) tmp GROUP BY `count`")
print(explanation1)
# explain SELECT statement through TableEnvironment.execute_sql()
table_result = t_env.execute_sql(
"EXPLAIN PLAN FOR "
"SELECT `count`, COUNT(word) FROM ("
"MyTable1 WHERE word LIKE 'F%' "
"UNION ALL "
"SELECT `count`, word FROM MyTable2) tmp GROUP BY `count`")
table_result.print()
table_result2 = t_env.execute_sql(
"EXPLAIN ESTIMATED_COST, CHANGELOG_MODE, PLAN_ADVICE, JSON_EXECUTION_PLAN "
"SELECT `count`, COUNT(word) FROM ("
"MyTable1 WHERE word LIKE 'F%' "
"UNION ALL "
"SELECT `count`, word FROM MyTable2) tmp GROUP BY `count`")
table_result2.print()
Flink SQL> CREATE TABLE MyTable1 (`count` bigint, word VARCHAR(256)) WITH ('connector' = 'datagen');
[INFO] Table has been created.
Flink SQL> CREATE TABLE MyTable2 (`count` bigint, word VARCHAR(256)) WITH ('connector' = 'datagen');
[INFO] Table has been created.
Flink SQL> EXPLAIN PLAN FOR SELECT `count`, COUNT(word) FROM
> ( SELECT `count`, word FROM MyTable1 WHERE word LIKE 'F%'
> UNION ALL
> SELECT `count`, word FROM MyTable2 ) tmp GROUP BY `count`;
Flink SQL> EXPLAIN ESTIMATED_COST, CHANGELOG_MODE, PLAN_ADVICE, JSON_EXECUTION_PLAN SELECT `count`, COUNT(word) FROM
> ( SELECT `count`, word FROM MyTable1 WHERE word LIKE 'F%'
> UNION ALL
> SELECT `count`, word FROM MyTable2 ) tmp GROUP BY `count`;
The EXPLAIN
result is:
== Abstract Syntax Tree ==
LogicalAggregate(group=[{0}], EXPR$1=[COUNT($1)])
+- LogicalUnion(all=[true])
:- LogicalProject(count=[$0], word=[$1])
: +- LogicalFilter(condition=[LIKE($1, _UTF-16LE'F%')])
: +- LogicalTableScan(table=[[default_catalog, default_database, MyTable1]])
+- LogicalProject(count=[$0], word=[$1])
+- LogicalTableScan(table=[[default_catalog, default_database, MyTable2]])
== Optimized Physical Plan ==
GroupAggregate(groupBy=[count], select=[count, COUNT(word) AS EXPR$1])
+- Exchange(distribution=[hash[count]])
+- Union(all=[true], union=[count, word])
:- Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')])
: +- TableSourceScan(table=[[default_catalog, default_database, MyTable1]], fields=[count, word])
+- TableSourceScan(table=[[default_catalog, default_database, MyTable2]], fields=[count, word])
== Optimized Execution Plan ==
GroupAggregate(groupBy=[count], select=[count, COUNT(word) AS EXPR$1])
+- Exchange(distribution=[hash[count]])
+- Union(all=[true], union=[count, word])
:- Calc(select=[count, word], where=[LIKE(word, 'F%')])
: +- TableSourceScan(table=[[default_catalog, default_database, MyTable1]], fields=[count, word])
+- TableSourceScan(table=[[default_catalog, default_database, MyTable2]], fields=[count, word])
== Abstract Syntax Tree ==
LogicalAggregate(group=[{0}], EXPR$1=[COUNT($1)])
+- LogicalUnion(all=[true])
:- LogicalProject(count=[$0], word=[$1])
: +- LogicalFilter(condition=[LIKE($1, _UTF-16LE'F%')])
: +- LogicalTableScan(table=[[default_catalog, default_database, MyTable1]])
+- LogicalProject(count=[$0], word=[$1])
+- LogicalTableScan(table=[[default_catalog, default_database, MyTable2]])
== Optimized Physical Plan With Advice ==
GroupAggregate(advice=[1], groupBy=[count], select=[count, COUNT(word) AS EXPR$1], changelogMode=[I,UA]): rowcount = 1.05E8, cumulative cost = {5.2E8 rows, 1.805E10 cpu, 4.0E9 io, 2.1E9 network, 0.0 memory}
+- Exchange(distribution=[hash[count]], changelogMode=[I]): rowcount = 1.05E8, cumulative cost = {4.15E8 rows, 1.7945E10 cpu, 4.0E9 io, 2.1E9 network, 0.0 memory}
+- Union(all=[true], union=[count, word], changelogMode=[I]): rowcount = 1.05E8, cumulative cost = {3.1E8 rows, 3.05E8 cpu, 4.0E9 io, 0.0 network, 0.0 memory}
:- Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')], changelogMode=[I]): rowcount = 5000000.0, cumulative cost = {1.05E8 rows, 1.0E8 cpu, 2.0E9 io, 0.0 network, 0.0 memory}
: +- TableSourceScan(table=[[default_catalog, default_database, MyTable1]], fields=[count, word], changelogMode=[I]): rowcount = 1.0E8, cumulative cost = {1.0E8 rows, 1.0E8 cpu, 2.0E9 io, 0.0 network, 0.0 memory}
+- TableSourceScan(table=[[default_catalog, default_database, MyTable2]], fields=[count, word], changelogMode=[I]): rowcount = 1.0E8, cumulative cost = {1.0E8 rows, 1.0E8 cpu, 2.0E9 io, 0.0 network, 0.0 memory}
advice[1]: [ADVICE] You might want to enable local-global two-phase optimization by configuring ('table.exec.mini-batch.enabled' to 'true', 'table.exec.mini-batch.allow-latency' to a positive long value, 'table.exec.mini-batch.size' to a positive long value).
== Optimized Execution Plan ==
GroupAggregate(groupBy=[count], select=[count, COUNT(word) AS EXPR$1])
+- Exchange(distribution=[hash[count]])
+- Union(all=[true], union=[count, word])
:- Calc(select=[count, word], where=[LIKE(word, 'F%')])
: +- TableSourceScan(table=[[default_catalog, default_database, MyTable1]], fields=[count, word])
+- TableSourceScan(table=[[default_catalog, default_database, MyTable2]], fields=[count, word])
== Physical Execution Plan ==
{
"nodes" : [ {
"id" : 17,
"type" : "Source: MyTable1[15]",
"pact" : "Data Source",
"contents" : "[15]:TableSourceScan(table=[[default_catalog, default_database, MyTable1]], fields=[count, word])",
"parallelism" : 1
}, {
"id" : 18,
"type" : "Calc[16]",
"pact" : "Operator",
"contents" : "[16]:Calc(select=[count, word], where=[LIKE(word, 'F%')])",
"parallelism" : 1,
"predecessors" : [ {
"id" : 17,
"ship_strategy" : "FORWARD",
"side" : "second"
} ]
}, {
"id" : 19,
"type" : "Source: MyTable2[17]",
"pact" : "Data Source",
"contents" : "[17]:TableSourceScan(table=[[default_catalog, default_database, MyTable2]], fields=[count, word])",
"parallelism" : 1
}, {
"id" : 22,
"type" : "GroupAggregate[20]",
"pact" : "Operator",
"contents" : "[20]:GroupAggregate(groupBy=[count], select=[count, COUNT(word) AS EXPR$1])",
"parallelism" : 1,
"predecessors" : [ {
"id" : 18,
"ship_strategy" : "HASH",
"side" : "second"
}, {
"id" : 19,
"ship_strategy" : "HASH",
"side" : "second"
} ]
} ]
}
ExplainDetails #
ExplainDetail
defines the types of details for explain result.
ESTIMATED_COST
Specify ESTIMATED_COST
will inform the optimizer to attach the estimated optimal cost of each physical rel node to the output.
== Optimized Physical Plan ==
TableSourceScan(..., cumulative cost ={1.0E8 rows, 1.0E8 cpu, 2.4E9 io, 0.0 network, 0.0 memory})
CHANGELOG_MODE
Specify CHANGELOG_MODE
will inform the optimizer to attach the changelog mode (see more details at Dynamic Tables) of each physical rel node to the ouptput.
== Optimized Physical Plan ==
GroupAggregate(..., changelogMode=[I,UA,D])
PLAN_ADVICE
PLAN_ADVICE
is supported since Flink version 1.17.
Specify PLAN_ADVICE
will inform the optimizer to analyze the optimized physical plan to provide the potential risk warnings and/or optimization advice.
Meanwhile, it will change the title of “Optimized Physical Plan” to “Optimized Physical Plan with Advice” as the highlight.
Plan advice is categorized by Kind and Scope.
Advice Kind | Description |
---|---|
WARNING | It reveals potential data correctness risks |
ADVICE | It suggests potential SQL optimizer tuning configuration |
Advice Scope | Description |
---|---|
QUERY_LEVEL | It provides advice from a global view, targeting the entire query |
NODE_LEVEL | It provides advice to a specific rel node |
Flink SQL provides the plan advice targeting the following issues
- Data Skewness caused by Group Aggregation (see more details at Group Aggregation and Performance Tuning)
- Non-deterministic Updates (abbr. NDU, see more details at Determinism In Continuous Queries)
If GroupAggregate
is detected and can be optimized to the local-global aggregation, the optimizer will tag advice id to the GroupAggregate
rel node, and suggests users to update configurations.
SET 'table.exec.mini-batch.enabled' = 'true';
SET 'table.exec.mini-batch.allow-latency' = '5s';
SET 'table.exec.mini-batch.size' = '200';
SET 'table.optimizer.agg-phase-strategy' = 'ONE_PHASE';
CREATE TABLE MyTable (
a BIGINT,
b INT NOT NULL,
c VARCHAR,
d BIGINT
) WITH (
'connector' = 'values',
'bounded' = 'false');
EXPLAIN PLAN_ADVICE
SELECT
AVG(a) AS avg_a,
COUNT(*) AS cnt,
COUNT(b) AS cnt_b,
MIN(b) AS min_b,
MAX(c) FILTER (WHERE a > 1) AS max_c
FROM MyTable;
== Optimized Physical Plan With Advice ==
Calc(select=[avg_a, cnt, cnt AS cnt_b, min_b, max_c])
+- GroupAggregate(advice=[1], select=[AVG(a) AS avg_a, COUNT(*) AS cnt, MIN(b) AS min_b, MAX(c) FILTER $f3 AS max_c])
+- Exchange(distribution=[single])
+- Calc(select=[a, b, c, IS TRUE(>(a, 1)) AS $f3])
+- MiniBatchAssigner(interval=[10000ms], mode=[ProcTime])
+- TableSourceScan(table=[[default_catalog, default_database, MyTable, project=[a, b, c], metadata=[]]], fields=[a, b, c])
advice[1]: [ADVICE] You might want to enable local-global two-phase optimization by configuring ('table.optimizer.agg-phase-strategy' to 'AUTO').
If NDU issue is detected, the optimizer will append the warning at the end of the physical plan.
CREATE TABLE MyTable (
a INT,
b BIGINT,
c STRING,
d INT,
`day` AS DATE_FORMAT(CURRENT_TIMESTAMP, 'yyMMdd'),
PRIMARY KEY (a, c) NOT ENFORCED
) WITH (
'connector' = 'values',
'changelog-mode' = 'I,UA,UB,D'
);
CREATE TABLE MySink (
a INT,
b BIGINT,
c STRING,
PRIMARY KEY (a) NOT ENFORCED
) WITH (
'connector' = 'values',
'sink-insert-only' = 'false'
);
EXPLAIN PLAN_ADVICE
INSERT INTO MySink
SELECT a, b, `day`
FROM MyTable
WHERE b > 100;
== Optimized Physical Plan With Advice ==
Sink(table=[default_catalog.default_database.MySink], fields=[a, b, day], upsertMaterialize=[true])
+- Calc(select=[a, b, DATE_FORMAT(CURRENT_TIMESTAMP(), 'yyMMdd') AS day], where=[>(b, 100)])
+- TableSourceScan(table=[[default_catalog, default_database, MyTable, filter=[], project=[a, b], metadata=[]]], fields=[a, b])
advice[1]: [WARNING] The column(s): day(generated by non-deterministic function: CURRENT_TIMESTAMP ) can not satisfy the determinism requirement for correctly processing update message('UB'/'UA'/'D' in changelogMode, not 'I' only), this usually happens when input node has no upsertKey(upsertKeys=[{}]) or current node outputs non-deterministic update messages. Please consider removing these non-deterministic columns or making them deterministic by using deterministic functions.
related rel plan:
Calc(select=[a, b, DATE_FORMAT(CURRENT_TIMESTAMP(), _UTF-16LE'yyMMdd') AS day], where=[>(b, 100)], changelogMode=[I,UB,UA,D])
+- TableSourceScan(table=[[default_catalog, default_database, MyTable, filter=[], project=[a, b], metadata=[]]], fields=[a, b], changelogMode=[I,UB,UA,D])
If no warning or advice is detected, the optimizer will append a notice that “No available advice” at the end of the physical plan.
CREATE TABLE MyTable (
a INT,
b BIGINT,
c STRING,
d INT
) WITH (
'connector' = 'values',
'changelog-mode' = 'I'
);
EXPLAIN PLAN_ADVICE
SELECT * FROM MyTable WHERE b > 100;
== Optimized Physical Plan With Advice ==
Calc(select=[a, b, c, d], where=[>(b, 100)])
+- TableSourceScan(table=[[default_catalog, default_database, MyTable]], fields=[a, b, c, d])
No available advice...
JSON_EXECUTION_PLAN
Specify JSON_EXECUTION_PLAN
will inform the optimizer to attach the json-format execution plan of the program to the output.
Syntax #
EXPLAIN [([ExplainDetail[, ExplainDetail]*]) | PLAN FOR] <query_statement_or_insert_statement_or_statement_set>
statement_set:
STATEMENT SET
BEGIN
insert_statement;
...
insert_statement;
END;
For query syntax, please refer to Queries page. For insert syntax, please refer to INSERT page.