This documentation is for an unreleased version of Apache Flink Machine Learning Library. We recommend you use the latest stable version.
Naive Bayes
Naive Bayes #
Naive Bayes is a multiclass classifier. Based on Bayes’ theorem, it assumes that there is strong (naive) independence between every pair of features.
Input Columns #
Param name | Type | Default | Description |
---|---|---|---|
featuresCol | Vector | "features" |
Feature vector. |
labelCol | Integer | "label" |
Label to predict. |
Output Columns #
Param name | Type | Default | Description |
---|---|---|---|
predictionCol | Integer | "prediction" |
Predicted label. |
Parameters #
Below are parameters required by NaiveBayesModel
.
Key | Default | Type | Required | Description |
---|---|---|---|---|
modelType | "multinomial" |
String | no | The model type. Supported values: “multinomial”. |
featuresCol | "features" |
String | no | Features column name. |
predictionCol | "prediction" |
String | no | Prediction column name. |
NaiveBayes
needs parameters above and also below.
Key | Default | Type | Required | Description |
---|---|---|---|---|
labelCol | "label" |
String | no | Label column name. |
smoothing | 1.0 |
Double | no | The smoothing parameter. |
Examples #
import org.apache.flink.ml.classification.naivebayes.NaiveBayes;
import org.apache.flink.ml.classification.naivebayes.NaiveBayesModel;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
/** Simple program that trains a NaiveBayes model and uses it for classification. */
public class NaiveBayesExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input training and prediction data.
DataStream<Row> trainStream =
env.fromElements(
Row.of(Vectors.dense(0, 0.), 11),
Row.of(Vectors.dense(1, 0), 10),
Row.of(Vectors.dense(1, 1.), 10));
Table trainTable = tEnv.fromDataStream(trainStream).as("features", "label");
DataStream<Row> predictStream =
env.fromElements(
Row.of(Vectors.dense(0, 1.)),
Row.of(Vectors.dense(0, 0.)),
Row.of(Vectors.dense(1, 0)),
Row.of(Vectors.dense(1, 1.)));
Table predictTable = tEnv.fromDataStream(predictStream).as("features");
// Creates a NaiveBayes object and initializes its parameters.
NaiveBayes naiveBayes =
new NaiveBayes()
.setSmoothing(1.0)
.setFeaturesCol("features")
.setLabelCol("label")
.setPredictionCol("prediction")
.setModelType("multinomial");
// Trains the NaiveBayes Model.
NaiveBayesModel naiveBayesModel = naiveBayes.fit(trainTable);
// Uses the NaiveBayes Model for predictions.
Table outputTable = naiveBayesModel.transform(predictTable)[0];
// Extracts and displays the results.
for (CloseableIterator<Row> it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
DenseVector features = (DenseVector) row.getField(naiveBayes.getFeaturesCol());
double predictionResult = (Double) row.getField(naiveBayes.getPredictionCol());
System.out.printf("Features: %s \tPrediction Result: %s\n", features, predictionResult);
}
}
}
# Simple program that trains a NaiveBayes model and uses it for classification.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.classification.naivebayes import NaiveBayes
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input training and prediction data
train_table = t_env.from_data_stream(
env.from_collection([
(Vectors.dense([0, 0.]), 11.),
(Vectors.dense([1, 0]), 10.),
(Vectors.dense([1, 1.]), 10.),
],
type_info=Types.ROW_NAMED(
['features', 'label'],
[DenseVectorTypeInfo(), Types.DOUBLE()])))
predict_table = t_env.from_data_stream(
env.from_collection([
(Vectors.dense([0, 1.]),),
(Vectors.dense([0, 0.]),),
(Vectors.dense([1, 0]),),
(Vectors.dense([1, 1.]),),
],
type_info=Types.ROW_NAMED(
['features'],
[DenseVectorTypeInfo()])))
# create a naive bayes object and initialize its parameters
naive_bayes = NaiveBayes() \
.set_smoothing(1.0) \
.set_features_col('features') \
.set_label_col('label') \
.set_prediction_col('prediction') \
.set_model_type('multinomial')
# train the naive bayes model
model = naive_bayes.fit(train_table)
# use the naive bayes model for predictions
output = model.transform(predict_table)[0]
# extract and display the results
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
features = result[field_names.index(naive_bayes.get_features_col())]
prediction_result = result[field_names.index(naive_bayes.get_prediction_col())]
print('Features: ' + str(features) + ' \tPrediction Result: ' + str(prediction_result))