This documentation is for an unreleased version of Apache Flink Machine Learning Library. We recommend you use the latest stable version.
IDF
IDF #
IDF computes the inverse document frequency (IDF) for the
input documents. IDF is computed following
idf = log((m + 1) / (d(t) + 1))
, where m
is the total
number of documents and d(t)
is the number of documents
that contains t
.
IDFModel further uses the computed inverse document frequency to compute tf-idf.
Input Columns #
Param name | Type | Default | Description |
---|---|---|---|
inputCol | Vector | "input" |
Input documents. |
Output Columns #
Param name | Type | Default | Description |
---|---|---|---|
outputCol | Vector | "output" |
Tf-idf values of the input. |
Parameters #
Below are the parameters required by IDFModel
.
Key | Default | Type | Required | Description |
---|---|---|---|---|
inputCol | "input" |
String | no | Input column name. |
outputCol | "output" |
String | no | Output column name. |
IDF
needs parameters above and also below.
Key | Default | Type | Required | Description |
---|---|---|---|---|
minDocFreq | 0 |
Integer | no | Minimum number of documents that a term should appear for filtering. |
Examples #
import org.apache.flink.ml.feature.idf.IDF;
import org.apache.flink.ml.feature.idf.IDFModel;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
/** Simple program that trains an IDF model and uses it for feature engineering. */
public class IDFExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input data.
DataStream<Row> inputStream =
env.fromElements(
Row.of(Vectors.dense(0, 1, 0, 2)),
Row.of(Vectors.dense(0, 1, 2, 3)),
Row.of(Vectors.dense(0, 1, 0, 0)));
Table inputTable = tEnv.fromDataStream(inputStream).as("input");
// Creates an IDF object and initializes its parameters.
IDF idf = new IDF().setMinDocFreq(2);
// Trains the IDF Model.
IDFModel model = idf.fit(inputTable);
// Uses the IDF Model for predictions.
Table outputTable = model.transform(inputTable)[0];
// Extracts and displays the results.
for (CloseableIterator<Row> it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
DenseVector inputValue = (DenseVector) row.getField(idf.getInputCol());
DenseVector outputValue = (DenseVector) row.getField(idf.getOutputCol());
System.out.printf("Input Value: %s\tOutput Value: %s\n", inputValue, outputValue);
}
}
}
# Simple program that trains an IDF model and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.feature.idf import IDF
from pyflink.table import StreamTableEnvironment
# Creates a new StreamExecutionEnvironment.
env = StreamExecutionEnvironment.get_execution_environment()
# Creates a StreamTableEnvironment.
t_env = StreamTableEnvironment.create(env)
# Generates input for training and prediction.
input_table = t_env.from_data_stream(
env.from_collection([
(Vectors.dense(0, 1, 0, 2),),
(Vectors.dense(0, 1, 2, 3),),
(Vectors.dense(0, 1, 0, 0),),
],
type_info=Types.ROW_NAMED(
['input', ],
[DenseVectorTypeInfo(), ])))
# Creates an IDF object and initializes its parameters.
idf = IDF().set_min_doc_freq(2)
# Trains the IDF Model.
model = idf.fit(input_table)
# Uses the IDF Model for predictions.
output = model.transform(input_table)[0]
# Extracts and displays the results.
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_index = field_names.index(idf.get_input_col())
output_index = field_names.index(idf.get_output_col())
print('Input Value: ' + str(result[input_index]) +
'\tOutput Value: ' + str(result[output_index]))