This documentation is for an unreleased version of Apache Flink Machine Learning Library. We recommend you use the latest stable version.
IndexToString
IndexToString #
IndexToStringModel
transforms input index column(s) to string column(s) using
the model data computed by StringIndexer. It is a reverse operation of
StringIndexerModel.
Input Columns #
Param name | Type | Default | Description |
---|---|---|---|
inputCols | Integer | null |
Indices to be transformed to string. |
Output Columns #
Param name | Type | Default | Description |
---|---|---|---|
outputCols | String | null |
Transformed strings. |
Parameters #
Below are the parameters required by StringIndexerModel
.
Key | Default | Type | Required | Description |
---|---|---|---|---|
inputCols | null |
String | yes | Input column names. |
outputCols | null |
String | yes | Output column names. |
Examples #
import org.apache.flink.ml.feature.stringindexer.IndexToStringModel;
import org.apache.flink.ml.feature.stringindexer.StringIndexerModelData;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.CloseableIterator;
import java.util.Arrays;
/**
* Simple program that creates an IndexToStringModelExample instance and uses it for feature
* engineering.
*/
public class IndexToStringModelExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Creates model data for IndexToStringModel.
StringIndexerModelData modelData =
new StringIndexerModelData(
new String[][] {{"a", "b", "c", "d"}, {"-1.0", "0.0", "1.0", "2.0"}});
Table modelTable = tEnv.fromDataStream(env.fromElements(modelData)).as("stringArrays");
// Generates input data.
DataStream<Row> predictStream = env.fromElements(Row.of(0, 3), Row.of(1, 2));
Table predictTable = tEnv.fromDataStream(predictStream).as("inputCol1", "inputCol2");
// Creates an indexToStringModel object and initializes its parameters.
IndexToStringModel indexToStringModel =
new IndexToStringModel()
.setInputCols("inputCol1", "inputCol2")
.setOutputCols("outputCol1", "outputCol2")
.setModelData(modelTable);
// Uses the indexToStringModel object for feature transformations.
Table outputTable = indexToStringModel.transform(predictTable)[0];
// Extracts and displays the results.
for (CloseableIterator<Row> it = outputTable.execute().collect(); it.hasNext(); ) {
Row row = it.next();
int[] inputValues = new int[indexToStringModel.getInputCols().length];
String[] outputValues = new String[indexToStringModel.getInputCols().length];
for (int i = 0; i < inputValues.length; i++) {
inputValues[i] = (int) row.getField(indexToStringModel.getInputCols()[i]);
outputValues[i] = (String) row.getField(indexToStringModel.getOutputCols()[i]);
}
System.out.printf(
"Input Values: %s \tOutput Values: %s\n",
Arrays.toString(inputValues), Arrays.toString(outputValues));
}
}
}
# Simple program that creates an IndexToStringModelExample instance and uses it
# for feature engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.feature.stringindexer import IndexToStringModel
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input data
predict_table = t_env.from_data_stream(
env.from_collection([
(0, 3),
(1, 2),
],
type_info=Types.ROW_NAMED(
['input_col1', 'input_col2'],
[Types.INT(), Types.INT()])
))
# create an index-to-string model and initialize its parameters and model data
model_data_table = t_env.from_data_stream(
env.from_collection([
([['a', 'b', 'c', 'd'], [-1., 0., 1., 2.]],),
],
type_info=Types.ROW_NAMED(
['stringArrays'],
[Types.OBJECT_ARRAY(Types.OBJECT_ARRAY(Types.STRING()))])
))
model = IndexToStringModel() \
.set_input_cols('input_col1', 'input_col2') \
.set_output_cols('output_col1', 'output_col2') \
.set_model_data(model_data_table)
# use the index-to-string model for feature engineering
output = model.transform(predict_table)[0]
# extract and display the results
field_names = output.get_schema().get_field_names()
input_values = [None for _ in model.get_input_cols()]
output_values = [None for _ in model.get_input_cols()]
for result in t_env.to_data_stream(output).execute_and_collect():
for i in range(len(model.get_input_cols())):
input_values[i] = result[field_names.index(model.get_input_cols()[i])]
output_values[i] = result[field_names.index(model.get_output_cols()[i])]
print('Input Values: ' + str(input_values) + '\tOutput Values: ' + str(output_values))