Catalogs
This documentation is for an unreleased version of Apache Flink. We recommend you use the latest stable version.

Catalogs #

Catalog 提供了元数据信息,例如数据库、表、分区、视图以及数据库或其他外部系统中存储的函数和信息。

数据处理最关键的方面之一是管理元数据。 元数据可以是临时的,例如临时表、或者通过 TableEnvironment 注册的 UDF。 元数据也可以是持久化的,例如 Hive Metastore 中的元数据。Catalog 提供了一个统一的API,用于管理元数据,并使其可以从 Table API 和 SQL 查询语句中来访问。

Catalog 类型 #

GenericInMemoryCatalog #

GenericInMemoryCatalog 是基于内存实现的 Catalog,所有元数据只在 session 的生命周期内可用。

JdbcCatalog #

JdbcCatalog 使得用户可以将 Flink 通过 JDBC 协议连接到关系数据库。Postgres Catalog 和 MySQL Catalog 是目前 JDBC Catalog 仅有的两种实现。 参考 JdbcCatalog 文档 获取关于配置 JDBC catalog 的详细信息。

HiveCatalog #

HiveCatalog 有两个用途:作为原生 Flink 元数据的持久化存储,以及作为读写现有 Hive 元数据的接口。 Flink 的 Hive 文档 提供了有关设置 HiveCatalog 以及访问现有 Hive 元数据的详细信息。

警告 Hive Metastore 以小写形式存储所有元数据对象名称。而 GenericInMemoryCatalog 区分大小写。

用户自定义 Catalog #

Catalog 是可扩展的,用户可以通过实现 Catalog 接口来开发自定义 Catalog。 想要在 SQL CLI 中使用自定义 Catalog,用户除了需要实现自定义的 Catalog 之外,还需要为这个 Catalog 实现对应的 CatalogFactory 接口。

CatalogFactory 定义了一组属性,用于 SQL CLI 启动时配置 Catalog。 这组属性集将传递给发现服务,在该服务中,服务会尝试将属性关联到 CatalogFactory 并初始化相应的 Catalog 实例。

从 Flink v1.16 开始, TableEnvironment 引入了一个用户类加载器,以在 table 程序、SQL Client、SQL Gateway 中保持一致的类加载行为。该类加载器会统一管理所有的用户 jar 包,包括通过 ADD JARCREATE FUNCTION .. USING JAR .. 添加的 jar 资源。 在用户自定义 catalog 中,应该将 Thread.currentThread().getContextClassLoader() 替换成该用户类加载器去加载类。否则,可能会发生 ClassNotFoundException 的异常。该用户类加载器可以通过 CatalogFactory.Context#getClassLoader 获得。

Catalog 中支持时间旅行的接口 #

从 1.18 开始, Flink 框架开始支持时间旅行查询表的历史数据。如果要查询表的历史数据,需要这张表所属于的 catalog 实现 getTable(ObjectPath tablePath, long timestamp) 方法,如下所示:

public class MyCatalogSupportTimeTravel implements Catalog {
    
    @Override
    public CatalogBaseTable getTable(ObjectPath tablePath, long timestamp)
            throws TableNotExistException {
        // Build a schema corresponding to the specific time point.
        Schema schema = buildSchema(timestamp);
        // Set parameters to read data at the corresponding time point.
        Map<String, String> options = buildOptions(timestamp);
        // Build CatalogTable
        CatalogTable catalogTable =
                CatalogTable.of(schema, "", Collections.emptyList(), options, timestamp);
        return catalogTable;
    }
}

public class MyDynamicTableFactory implements DynamicTableSourceFactory {
    @Override
    public DynamicTableSource createDynamicTableSource(Context context) {
        final ReadableConfig configuration =
                Configuration.fromMap(context.getCatalogTable().getOptions());

        // Get snapshot from CatalogTable
        final Optional<Long> snapshot = context.getCatalogTable().getSnapshot();
        
        // Build DynamicTableSource using snapshot options.
        final DynamicTableSource dynamicTableSource = buildDynamicSource(configuration, snapshot);

        return dynamicTableSource;
    }
}

使用 SQL DDL #

用户可以使用 DDL 通过 Table API 或者 SQL Client 在 Catalog 中创建表。

TableEnvironment tableEnv = ...;

// Create a HiveCatalog 
Catalog catalog = new HiveCatalog("myhive", null, "<path_of_hive_conf>");

// Register the catalog
tableEnv.registerCatalog("myhive", catalog);

// Create a catalog database
tableEnv.executeSql("CREATE DATABASE mydb WITH (...)");

// Create a catalog table
tableEnv.executeSql("CREATE TABLE mytable (name STRING, age INT) WITH (...)");

tableEnv.listTables(); // should return the tables in current catalog and database.
val tableEnv = ...

// Create a HiveCatalog 
val catalog = new HiveCatalog("myhive", null, "<path_of_hive_conf>");

// Register the catalog
tableEnv.registerCatalog("myhive", catalog);

// Create a catalog database
tableEnv.executeSql("CREATE DATABASE mydb WITH (...)");

// Create a catalog table
tableEnv.executeSql("CREATE TABLE mytable (name STRING, age INT) WITH (...)");

tableEnv.listTables(); // should return the tables in current catalog and database.
from pyflink.table.catalog import HiveCatalog

# Create a HiveCatalog
catalog = HiveCatalog("myhive", None, "<path_of_hive_conf>")

# Register the catalog
t_env.register_catalog("myhive", catalog)

# Create a catalog database
t_env.execute_sql("CREATE DATABASE mydb WITH (...)")

# Create a catalog table
t_env.execute_sql("CREATE TABLE mytable (name STRING, age INT) WITH (...)")

# should return the tables in current catalog and database.
t_env.list_tables()
// the catalog should have been registered via yaml file
Flink SQL> CREATE DATABASE mydb WITH (...);

Flink SQL> CREATE TABLE mytable (name STRING, age INT) WITH (...);

Flink SQL> SHOW TABLES;
mytable

更多详细信息,请参考Flink SQL CREATE DDL

使用 Java/Scala #

用户可以用编程的方式使用Java 或者 Scala 来创建 Catalog 表。

import org.apache.flink.table.api.*;
import org.apache.flink.table.catalog.*;
import org.apache.flink.table.catalog.hive.HiveCatalog;

TableEnvironment tableEnv = TableEnvironment.create(EnvironmentSettings.inStreamingMode());

// Create a HiveCatalog
Catalog catalog = new HiveCatalog("myhive", null, "<path_of_hive_conf>");

// Register the catalog
tableEnv.registerCatalog("myhive", catalog);

// Create a catalog database
catalog.createDatabase("mydb", new CatalogDatabaseImpl(...));

// Create a catalog table
final Schema schema = Schema.newBuilder()
    .column("name", DataTypes.STRING())
    .column("age", DataTypes.INT())
    .build();

tableEnv.createTable("myhive.mydb.mytable", TableDescriptor.forConnector("kafka")
    .schema(schema)
    // …
    .build());

List<String> tables = catalog.listTables("mydb"); // tables should contain "mytable"
import org.apache.flink.table.api._
import org.apache.flink.table.catalog._
import org.apache.flink.table.catalog.hive.HiveCatalog

val tableEnv = TableEnvironment.create(EnvironmentSettings.inStreamingMode())

// Create a HiveCatalog
val catalog = new HiveCatalog("myhive", null, "<path_of_hive_conf>")

// Register the catalog
tableEnv.registerCatalog("myhive", catalog)

// Create a catalog database
catalog.createDatabase("mydb", new CatalogDatabaseImpl(...))

// Create a catalog table
val schema = Schema.newBuilder()
    .column("name", DataTypes.STRING())
    .column("age", DataTypes.INT())
    .build()

tableEnv.createTable("myhive.mydb.mytable", TableDescriptor.forConnector("kafka")
    .schema(schema)
    // …
    .build())

val tables = catalog.listTables("mydb") // tables should contain "mytable"
from pyflink.table import *
from pyflink.table.catalog import HiveCatalog, CatalogDatabase, ObjectPath, CatalogBaseTable
from pyflink.table.descriptors import Kafka

settings = EnvironmentSettings.in_batch_mode()
t_env = TableEnvironment.create(settings)

# Create a HiveCatalog
catalog = HiveCatalog("myhive", None, "<path_of_hive_conf>")

# Register the catalog
t_env.register_catalog("myhive", catalog)

# Create a catalog database
database = CatalogDatabase.create_instance({"k1": "v1"}, None)
catalog.create_database("mydb", database)

# Create a catalog table
schema = Schema.new_builder() \
    .column("name", DataTypes.STRING()) \
    .column("age", DataTypes.INT()) \
    .build()
    
catalog_table = t_env.create_table("myhive.mydb.mytable", TableDescriptor.for_connector("kafka")
    .schema(schema)
    # …
    .build())

# tables should contain "mytable"
tables = catalog.list_tables("mydb")

Catalog API #

注意:这里只列出了编程方式的 Catalog API,用户可以使用 SQL DDL 实现许多相同的功能。 关于 DDL 的详细信息请参考 SQL CREATE DDL

数据库操作 #

// create database
catalog.createDatabase("mydb", new CatalogDatabaseImpl(...), false);

// drop database
catalog.dropDatabase("mydb", false);

// alter database
catalog.alterDatabase("mydb", new CatalogDatabaseImpl(...), false);

// get database
catalog.getDatabase("mydb");

// check if a database exist
catalog.databaseExists("mydb");

// list databases in a catalog
catalog.listDatabases("mycatalog");
from pyflink.table.catalog import CatalogDatabase

# create database
catalog_database = CatalogDatabase.create_instance({"k1": "v1"}, None)
catalog.create_database("mydb", catalog_database, False)

# drop database
catalog.drop_database("mydb", False)

# alter database
catalog.alter_database("mydb", catalog_database, False)

# get database
catalog.get_database("mydb")

# check if a database exist
catalog.database_exists("mydb")

# list databases in a catalog
catalog.list_databases()

表操作 #

// create table
catalog.createTable(new ObjectPath("mydb", "mytable"), new CatalogTableImpl(...), false);

// drop table
catalog.dropTable(new ObjectPath("mydb", "mytable"), false);

// alter table
catalog.alterTable(new ObjectPath("mydb", "mytable"), new CatalogTableImpl(...), false);

// rename table
catalog.renameTable(new ObjectPath("mydb", "mytable"), "my_new_table");

// get table
catalog.getTable("mytable");

// check if a table exist or not
catalog.tableExists("mytable");

// list tables in a database
catalog.listTables("mydb");
from pyflink.table import *
from pyflink.table.catalog import CatalogBaseTable, ObjectPath
from pyflink.table.descriptors import Kafka

table_schema = TableSchema.builder() \
    .field("name", DataTypes.STRING()) \
    .field("age", DataTypes.INT()) \
    .build()

table_properties = Kafka() \
    .version("0.11") \
    .start_from_earlist() \
    .to_properties()

catalog_table = CatalogBaseTable.create_table(schema=table_schema, properties=table_properties, comment="my comment")

# create table
catalog.create_table(ObjectPath("mydb", "mytable"), catalog_table, False)

# drop table
catalog.drop_table(ObjectPath("mydb", "mytable"), False)

# alter table
catalog.alter_table(ObjectPath("mydb", "mytable"), catalog_table, False)

# rename table
catalog.rename_table(ObjectPath("mydb", "mytable"), "my_new_table")

# get table
catalog.get_table("mytable")

# check if a table exist or not
catalog.table_exists("mytable")

# list tables in a database
catalog.list_tables("mydb")

视图操作 #

// create view
catalog.createTable(new ObjectPath("mydb", "myview"), new CatalogViewImpl(...), false);

// drop view
catalog.dropTable(new ObjectPath("mydb", "myview"), false);

// alter view
catalog.alterTable(new ObjectPath("mydb", "mytable"), new CatalogViewImpl(...), false);

// rename view
catalog.renameTable(new ObjectPath("mydb", "myview"), "my_new_view", false);

// get view
catalog.getTable("myview");

// check if a view exist or not
catalog.tableExists("mytable");

// list views in a database
catalog.listViews("mydb");
from pyflink.table import *
from pyflink.table.catalog import CatalogBaseTable, ObjectPath

table_schema = TableSchema.builder() \
    .field("name", DataTypes.STRING()) \
    .field("age", DataTypes.INT()) \
    .build()

catalog_table = CatalogBaseTable.create_view(
    original_query="select * from t1",
    expanded_query="select * from test-catalog.db1.t1",
    schema=table_schema,
    properties={},
    comment="This is a view"
)

catalog.create_table(ObjectPath("mydb", "myview"), catalog_table, False)

# drop view
catalog.drop_table(ObjectPath("mydb", "myview"), False)

# alter view
catalog.alter_table(ObjectPath("mydb", "mytable"), catalog_table, False)

# rename view
catalog.rename_table(ObjectPath("mydb", "myview"), "my_new_view", False)

# get view
catalog.get_table("myview")

# check if a view exist or not
catalog.table_exists("mytable")

# list views in a database
catalog.list_views("mydb")

分区操作 #

// create view
catalog.createPartition(
    new ObjectPath("mydb", "mytable"),
    new CatalogPartitionSpec(...),
    new CatalogPartitionImpl(...),
    false);

// drop partition
catalog.dropPartition(new ObjectPath("mydb", "mytable"), new CatalogPartitionSpec(...), false);

// alter partition
catalog.alterPartition(
    new ObjectPath("mydb", "mytable"),
    new CatalogPartitionSpec(...),
    new CatalogPartitionImpl(...),
    false);

// get partition
catalog.getPartition(new ObjectPath("mydb", "mytable"), new CatalogPartitionSpec(...));

// check if a partition exist or not
catalog.partitionExists(new ObjectPath("mydb", "mytable"), new CatalogPartitionSpec(...));

// list partitions of a table
catalog.listPartitions(new ObjectPath("mydb", "mytable"));

// list partitions of a table under a give partition spec
catalog.listPartitions(new ObjectPath("mydb", "mytable"), new CatalogPartitionSpec(...));

// list partitions of a table by expression filter
catalog.listPartitions(new ObjectPath("mydb", "mytable"), Arrays.asList(epr1, ...));
from pyflink.table.catalog import ObjectPath, CatalogPartitionSpec, CatalogPartition

catalog_partition = CatalogPartition.create_instance({}, "my partition")

catalog_partition_spec = CatalogPartitionSpec({"third": "2010", "second": "bob"})
catalog.create_partition(
    ObjectPath("mydb", "mytable"),
    catalog_partition_spec,
    catalog_partition,
    False)

# drop partition
catalog.drop_partition(ObjectPath("mydb", "mytable"), catalog_partition_spec, False)

# alter partition
catalog.alter_partition(
    ObjectPath("mydb", "mytable"),
    CatalogPartitionSpec(...),
    catalog_partition,
    False)

# get partition
catalog.get_partition(ObjectPath("mydb", "mytable"), catalog_partition_spec)

# check if a partition exist or not
catalog.partition_exists(ObjectPath("mydb", "mytable"), catalog_partition_spec)

# list partitions of a table
catalog.list_partitions(ObjectPath("mydb", "mytable"))

# list partitions of a table under a give partition spec
catalog.list_partitions(ObjectPath("mydb", "mytable"), catalog_partition_spec)

函数操作 #

// create function
catalog.createFunction(new ObjectPath("mydb", "myfunc"), new CatalogFunctionImpl(...), false);

// drop function
catalog.dropFunction(new ObjectPath("mydb", "myfunc"), false);

// alter function
catalog.alterFunction(new ObjectPath("mydb", "myfunc"), new CatalogFunctionImpl(...), false);

// get function
catalog.getFunction("myfunc");

// check if a function exist or not
catalog.functionExists("myfunc");

// list functions in a database
catalog.listFunctions("mydb");
from pyflink.table.catalog import ObjectPath, CatalogFunction

catalog_function = CatalogFunction.create_instance(class_name="my.python.udf")

# create function
catalog.create_function(ObjectPath("mydb", "myfunc"), catalog_function, False)

# drop function
catalog.drop_function(ObjectPath("mydb", "myfunc"), False)

# alter function
catalog.alter_function(ObjectPath("mydb", "myfunc"), catalog_function, False)

# get function
catalog.get_function("myfunc")

# check if a function exist or not
catalog.function_exists("myfunc")

# list functions in a database
catalog.list_functions("mydb")

通过 Table API 和 SQL Client 操作 Catalog #

注册 Catalog #

用户可以访问默认创建的内存 Catalog default_catalog,这个 Catalog 默认拥有一个默认数据库 default_database。 用户也可以注册其他的 Catalog 到现有的 Flink 会话中。

tableEnv.registerCatalog(new CustomCatalog("myCatalog"));
t_env.register_catalog(catalog)

使用 YAML 定义的 Catalog 必须提供 type 属性,以表示指定的 Catalog 类型。 以下几种类型可以直接使用。

Catalog Type Value
GenericInMemory generic_in_memory
Hive hive
catalogs:
   - name: myCatalog
     type: custom_catalog
     hive-conf-dir: ...

修改当前的 Catalog 和数据库 #

Flink 始终在当前的 Catalog 和数据库中寻找表、视图和 UDF。

tableEnv.useCatalog("myCatalog");
tableEnv.useDatabase("myDb");
t_env.use_catalog("myCatalog")
t_env.use_database("myDb")
Flink SQL> USE CATALOG myCatalog;
Flink SQL> USE myDB;

通过提供全限定名 catalog.database.object 来访问不在当前 Catalog 中的元数据信息。

tableEnv.from("not_the_current_catalog.not_the_current_db.my_table");
t_env.from_path("not_the_current_catalog.not_the_current_db.my_table")
Flink SQL> SELECT * FROM not_the_current_catalog.not_the_current_db.my_table;

列出可用的 Catalog #

tableEnv.listCatalogs();
t_env.list_catalogs()
Flink SQL> show catalogs;

列出可用的数据库 #

tableEnv.listDatabases();
t_env.list_databases()
Flink SQL> show databases;

列出可用的表 #

tableEnv.listTables();
t_env.list_tables()
Flink SQL> show tables;

Catalog Modification Listener #

Flink supports registering customized listener for catalog modification, such as database and table ddl. Flink will create a CatalogModificationEvent event for ddl and notify CatalogModificationListener. You can implement a listener and do some customized operations when receiving the event, such as report the information to some external meta-data systems.

Implement Catalog Listener #

There are two interfaces for the catalog modification listener: CatalogModificationListenerFactory to create the listener and CatalogModificationListener to receive and process the event. You need to implement these interfaces and below is an example.

/** Factory used to create a {@link CatalogModificationListener} instance. */
public class YourCatalogListenerFactory implements CatalogModificationListenerFactory {
    /** The identifier for the customized listener factory, you can named it yourself. */
    private static final String IDENTIFIER = "your_factory";

    @Override
    public String factoryIdentifier() {
        return IDENTIFIER;
    }

    @Override
    public CatalogModificationListener createListener(Context context) {
        return new YourCatalogListener(Create http client from context);
    }
}

/** Customized catalog modification listener. */
public class YourCatalogListener implements CatalogModificationListener {
    private final HttpClient client;

    YourCatalogListener(HttpClient client) {
        this.client = client;
    }
    
    @Override
    public void onEvent(CatalogModificationEvent event) {
        // Report the database and table information via http client.
    }
}

You need to create a file org.apache.flink.table.factories.Factory in META-INF/services with the content of the full name of YourCatalogListenerFactory for your customized catalog listener factory. After that, you can package the codes into a jar file and add it to lib of Flink cluster.

Register Catalog Listener #

After implemented above catalog modification factory and listener, you can register it to the table environment.

Configuration configuration = new Configuration();

// Add the factory identifier, you can set multiple listeners in the configuraiton.
configuration.set(TableConfigOptions.TABLE_CATALOG_MODIFICATION_LISTENERS, Arrays.asList("your_factory"));
TableEnvironment env = TableEnvironment.create(
            EnvironmentSettings.newInstance()
                .withConfiguration(configuration)
                .build());

// Create/Alter/Drop database and table.
env.executeSql("CREATE TABLE ...").wait();

For sql-gateway, you can add the option table.catalog-modification.listeners in the Flink configuration file and start the gateway, or you can also start sql-gateway with dynamic parameter, then you can use sql-client to perform ddl directly.

Catalog Store #

Catalog Store 用于保存 Catalog 的配置信息, 配置 Catalog Store 之后,在 session 中创建的 catalog 信息会持久化至 Catalog Store 对应的外部系统中,即使 session 重建, 之前创建的 Catalog 依旧可以从 Catalog Store 中重新获取。

Catalog Store 的配置 #

用户可以以不同的方式配置 Catalog Store,一种是使用Table API,另一种是使用 YAML 配置。

在 Table API 中使用 Catalog Store 实例来注册 Catalog Store 。

// Initialize a catalog Store
CatalogStore catalogStore = new FileCatalogStore("file://path/to/catalog/store/");

// set up the catalog store
final EnvironmentSettings settings =
        EnvironmentSettings.newInstance().inBatchMode()
        .withCatalogStore(catalogStore)
        .build();

final TableEnvironment tableEnv = TableEnvironment.create(settings);

在 Table API 中使用 configuration 注册 Catalog Store 。

// set up configuration
Configuration configuration = new Configuration();
configuration.set("table.catalog-store.kind", "file");
configuration.set("table.catalog-store.file.path", "file://path/to/catalog/store/");
// set up the configuration.
final EnvironmentSettings settings =
        EnvironmentSettings.newInstance().inBatchMode()
        .withConfiguration(configuration)
        .build();

final TableEnvironment tableEnv = TableEnvironment.create(settings);

在 SQL Gateway 中,推荐在 Flink 配置文件中进行配置,所有的 session 可以自动使用已经创建好的 Catalog 。 配置的格式如下,一般情况下需要配置 Catalog Store 的 kind ,以及 Catalog Store 需要的其他参数配置。

table.catalog-store.kind: file
table.catalog-store.file.path: /path/to/catalog/store/

Catalog Store 类型 #

Flink 框架内置了两种 Catalog Store,分别是 GenericInMemoryCatalogStore 和 FileCatalogStore。用户也可以自定义 Catalog Store 。

GenericInMemoryCatalogStore #

GenericInMemoryCatalogStore 是基于内存实现的 Catalog Store,所有的 Catalog 配置只在 session 的生命周期内可用, session 重建之后 store 中保存的 Catalog 配置也会自动清理。

参数 描述
kind
指定要使用的 Catalog Store 类型,此处应为 'generic_in_memory'

FileCatalogStore #

FileCatalogStore 可以将用户的 Catalog 配置信息保存至文件中,使用 FileCatalogStore 需要指定 Catalog 配置需要 保存的目录,不同的 Catalog 会对应不同的文件并和 Catalog Name 一一对应。

这是一个示例目录结构,用于表示使用 FileCatalogStore 保存 catalog 配置的情况:

- /path/to/save/the/catalog/
  - catalog1.yaml
  - catalog2.yaml
  - catalog3.yaml
参数 描述
kind
指定要使用的 Catalog Store 类型,此处应为 'file'
path
指定要使用的 Catalog Store 保存的路径,必须是一个合法的目录,当前只支持本地目录

用户自定义 Catalog Store #

Catalog Store 是可拓展的, 用户可以通过实现 Catalog Store 的接口来自定义 Catalog Store。如果需要 SQL CLI 或者 SQL Gateway 中使用 Catalog Store,还需要这个 Catalog Store 实现对应的 CatalogStoreFactory 接口。

public class CustomCatalogStoreFactory implements CatalogStoreFactory {

    public static final String IDENTIFIER = "custom-kind";
    
    // Used to connect external storage systems
    private CustomClient client;
    
    @Override
    public CatalogStore createCatalogStore() {
        return new CustomCatalogStore();
    }

    @Override
    public void open(Context context) throws CatalogException {
        // initialize the resources, such as http client
        client = initClient(context);
    }

    @Override
    public void close() throws CatalogException {
        // release the resources
    }

    @Override
    public String factoryIdentifier() {
        // table store kind identifier
        return IDENTIFIER;
    }

    @Override
    public Set<ConfigOption<?>> requiredOptions() {
        // define the required options
        Set<ConfigOption> options = new HashSet();
        options.add(OPTION_1);
        options.add(OPTION_2);
        
        return options;
    }

    @Override
    public Set<ConfigOption<?>> optionalOptions() {
        // define the optional options
    }
}

public class CustomCatalogStore extends AbstractCatalogStore {

    private Client client;
    
    public CustomCatalogStore(Client client) {
        this.client = client;
    }

    @Override
    public void storeCatalog(String catalogName, CatalogDescriptor catalog)
            throws CatalogException {
        // store the catalog
    }

    @Override
    public void removeCatalog(String catalogName, boolean ignoreIfNotExists)
            throws CatalogException {
        // remove the catalog descriptor
    }

    @Override
    public Optional<CatalogDescriptor> getCatalog(String catalogName) {
        // retrieve the catalog configuration and build the catalog descriptor
    }

    @Override
    public Set<String> listCatalogs() {
        // list all catalogs
    }

    @Override
    public boolean contains(String catalogName) {
    }
}